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ABSTRACT

Neutrinos are subatomic particles that weakly interact with matter due to their neutral
charge and small cross section. Detectors that search for neutrinos require sensitive instru-
mentation, which makes them susceptible to various background sources such as gamma
rays. Additionally, coherent elastic neutrino-nucleus scattering events, or CEvNS, are the
weakest neutrino interactions at 1-25 keV, making them exceptionally difficult to observe. To
understand the physics of CEvNS events within the detector material, the recoil signatures
of relevant interactions must be determined. Traditional analysis methods are effective, but
cannot be applied to energies below 50 keV, due to the overlap of discrimination criteria. In
this thesis, we investigate the effectiveness of applied neural networks to distinguish between
two recoil signatures present in COHERENT’s CENNS-10 LAr detector. Results indicate
that dense neural networks perform well on classifying low energy events that approach the
CEvNS energy threshold. We also discuss modifications to the complexity and structure of
the neural network, which may improve generality.
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1  Introduction  

1.1  Neutrinos  and  CEvNS  

The direct observation of neutrinos is a long standing efort within the physics community 

since their proposal in 1930 by Wolfgang Pauli. Various detector technologies have been 

developed in the pursuit of determining the unknown properties of neutrinos, such as mass 

and antiparticle equivalents. Much like other subatomic particles, how neutrinos interact 

with matter depends on their energy and the incident nuclei. The Standard Model makes 

predictions on the properties of these interactions, which can be tested against the results of 

neutrino experiments. The validation of the Standard Model is a major focus within physics 

research, motivating the development of novel methods to detect neutrinos. 

One  type  of  neutrino  interaction  is  called  coherent  elastic  neutrino-nucleus  scattering,  or  

CEvNS.  Much  like  classical  elastic  collisions,  the  neutrino  collides  with  the  nucleus  of  an  

atom  resulting  in  a  small  exchange  of  energy.  At  this  energy  range,  the  neutrino  sees  the  

entire  nucleus  coherently,  instead  of  individual  nucleons.  This  coherence  is  predicted  by  the  

Standard  Model  to  have  a  cross-section  dependence  on  the  number  of  nucleons  squared  (  N2),  

which  can  be  experimentally  tested.  This  interaction  was  frst  proposed  in  1974  by  Freedman,  

which  went  undetected  for  nearly  50  years.  These  CEvNS  events  are  the  lowest  energy  

interactions  between  neutrinos  and  nuclei  with  a  range  of  1  to  25  keV,  making  them  difcult  

to  detect.  Researchers  searching  for  CEvNS  described  this  interaction  as  trying  to  “measure  

an  elephant’s  recoil  after  being  bumped  by  a  mosquito”[1].  Standard  instruments  lack  the  

sensitivity  to  resolve  this  collision,  so  new  detectors  needed  to  be  developed  specifcally  for  

this  search.  

The                            

the  frst  direct  observation  of  a  coherent  elastic  neutrino-nucleus  scattering  (CEvNS)  event.  

The  collaboration  has  members  from  21  institutions  across  4  countries,  and  successfully  ob-

served  a  CEvNS  event  with  their  CsI[Na]  crystal  (Cesium-Iodide)  detector  in  2017[2].  Along  

COHERENT neutrino research group was founded in 2013 with the goal to make
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with  the  CsI[Na]  detector,  COHERENT  manages  several  detector  systems  housed  at  Oak  

Ridge  National  Laboratory  (ORNL),  which  all  look  to  further  CEvNS  event  detection  and  

research.  These  include  a  suite  of  state-of-the-art  instruments  including  NUBES  (neutrino  

cubes),  high-purity  germanium  (HPGe),  NaI[Ti],  and  CENNS-10  LAr  (liquid  argon)  detec-

tors.  These  detectors  are  housed  in  an  underground  facility  at  ORNL,  called  Neutrino  Alley,  

near  the  Spallation  Neutron  Source  (SNS).  The  SNS  provides  a  consistent  neutron/neutrino  

profle  by  colliding  liquid  mercury  with  accelerated  protons,  which  serves  as  the  primary  

source  of  neutrinos  for  COHERENT’s  detectors.  

Figure 1: Detector Suite at ORNL-SNS. 

The  COHERENT  detector  suite  has  been  operational  for  several  years,  with  pauses  in  

data  acquisition  (DAQ)  for  maintenance,  upgrades,  or  system  replacement.  This  consis-

tent  up-time  generates  a  large  amount  of  data  to  process,  even  for  a  single  detector.  To  

date,  COHERENT  manages  and  maintains  over  1600  terabytes  (1.6  petabytes)  of  collected  

data  in  a  high-performance  cluster.  Event  detection  methods  and  DAQ  can  also  vary,  such  
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as  the  HPGe  recording  phonons,  or  CENNS-10  utilizing  photo-multiplier  tubes  to  record  

scintillation.  In  our  research,  we  focus  on  data  from  the  CENNS-10  LAr  detector.  

1.2  CENNS-10  LAr  Detector  

The  CENNS-10  detector[3]  in  Neutrino  Alley  is  a  complex  system,  relying  on  several  

key  components  to  remain  operational.  The  main  target  is  a  Tefon  chamber  coated  with  

tetraphenyl  butadiene  (TPB),  housing  56.7  L  of  liquid  argon.  This  chamber  is  capped  at  

the  ends  with  TPB  coated  Hamamatsu  photomultiplier  tubes  to  collect  a  scintillation  event,  

which  is  captured  by  a  CAEN  250  MHz  digitizer.  The  system  is  then  encapsulated  by  copper  

and  lead  shielding  and  flled  with  water  to  mitigate  steady-state  gamma  backgrounds  and  

incident  beam-related  neutrons.  

Figure  2:  Construction  diagram  for  the  CENNS-10  LAr  detector.  

One  challenge  of  operating  a  LAr  detector  is  keeping  the  argon  in  its  liquid  form.  For  

CENNS-10,  this  is  handled  by  a  top-mounted  Cryomech  PT-90  cryo-refrigerator  which  con-

tinuously  circulates  and  cools  the  argon.  To  maintain  purity  standards  within  the  target(1  
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ppm),  the  cooling  system  is  connected  to  a  SAES  Zr  which  boils  of  and  removes  residual  

gases.  A  higher  presence  of  contaminants  in  the  argon  will  alter  the  scintillation  behavior,  

with  nuclear  collisions  or  internal  radioactivity  producing  unwanted  photons.  

The  use  of  TPB  coatings  on  the  PMTs  and  target  chamber  is  to  shift  the  original  scintil-

lated  light  from  128  nm  to  the  visible  spectrum,  which  is  then  collected  by  the  PMTs.  The  

use  of  TPB  coatings  increased  light  output  by  a  factor  of  5,  with  the  shifted  light  now  in  

the  range  for  observation  in  PMTs.  A  single  photoelectron  (PE)  calibration  is  performed  on  

a  weekly  basis  to  ensure  normal  functions  in  the  system,  which  can  remain  stable  for  some  

time[4].  Understanding  the  response  from  a  single  PE  is  critical  for  analysis  methods  and  

serves  as  the  baseline  energy  of  a  single  count  in  the  PMTs.  

CENNS-10  is  sensitive  to  two  primary  recoils;  electronic  and  nuclear.  Due  to  the  res-

olution  required  to  observe  CEvNS  events,  electronic  related  backgrounds  cannot  be  con-

ventionally  mitigated.  Gamma  rays  are  a  product  of  many  natural  decay  processes,  like  

potassium-40  or  from  cosmic  weather.  Due  to  their  high  penetration  in  matter,  gamma  rays  

are  difcult  to  completely  abate,  even  with  lead  or  tungsten  [5].  We  consider  gamma  events  

as  electronic  recoils  since  they  exchange  energy  directly  with  electron  orbitals.  

There are three primary gamma-atom interactions that can take place within the detector 

which depend on the atomic number and energy of the incident photon. These interactions 

afect the amount of light produced in the target material and how energy is deposited. At 

the lowest energy around 100 keV, the Photoelectric Efect is the primary mechanism of 

energy transfer. In this process, all the energy of the gamma ray is transferred to a bound 

electron. This electron is ejected from its bound state with an energy equal to the gamma ray 

minus the electron’s binding energy. If the electron’s binding energy is known, an accurate 

measurement of the gamma’s energy can be made. 

h  ∆λ  =  (1  −  cos  θ)  (1)  
mc 
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Figure  3:  Electronic  recoil  mechanisms.  

     The  second  most  energetic  interaction  takes  place   with gamma   rays around  100-1,000   

keV, which   is called  Compton  Scattering.   In  this process,   a photon  defects   of  weakly  

bound electrons,  changing   the gamma’s  direction   and transferring   some   of its  energy . The  

energy  loss  per interaction    is  given in  Equation   [1],  and is  converted   to kinetic  energy [6].  

After each  scattering   event,   ∆λ is  the  change in  wavelength   of  the incident   gamma,  in  

proportion  to Planck’s   Constant  over  the  electron   rest  mass   and the  speed  of light.   The  

amount   of energy  lost is  highly   dependent  on  the   incident   angle  θ , as a direct  hit will  

theoretically   transfer    all  its  energy  . If a  direct  hit is  not  made, the  scattering  can  

continue   through  material,  where  the  gamma  can  eventually   lose  enough   energy  to  be  

absorbed by  a bound   electron, as  determined  by the Photoelectric Efect. 

High  energy  gamma  rays  above  1,022  keV  that  interact  with  an  atom  can  produce  

electron-positron  pairs,  which  annihilate  to  create  two  511  keV  gamma  rays.  This  is  an  
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Figure  4:  Interaction  likelihood  as  a  function  of  energy  vs.  Z.  

interesting  mechanism,  as  energy  is  converted  directly  into  creating  mass.  For  energies  

above  1,022  keV,  the  excess  is  transferred  as  momentum,  resulting  in  a  kinetic  recoil.  The  

probability  of  each  of  these  interactions  can  be  plotted  as  a  function  of  energy  to  atomic  

number,  as  seen  in  Figure  [4].  By  calibrating  CENNS-10  with  a  variety  of  gamma  sources,  

such  as  krypton-83m  or  cobalt-57,  we  can  observe  the  detector  response  across  a  range  of  

energies.  Since  the  primary  background  of  CENNS-10  are  gamma  photons,  it  is  necessary  

to  understand  these  interactions.  

A  neutron  background  is  also  naturally  present  on  Earth;  mostly  from  cosmic  muon  

induced  spallation  and  natural  fssion  within  crustal  deposits.  Neutron  interactions  result  in  

nuclear  recoils,  as  the  neutrally  charged  particle  ignores  electron  orbitals  and  can  strike  the  

nucleus  directly,  observed  in  Figure  [5].  Neutrons  introduce  another  difculty  in  observing  

a  CEvNS  event,  as  both  neutron  and  neutrino  interactions  result  in  nuclear  recoils.  The  

resultant  recoil  waveforms  share  similar  characteristics,  as  slow  moving  neutrons  deposit  

energy  similar  to  the  energy  deposit  of  high  energy  neutrinos[7].  One  beneft  of  using  the  

SNS  as  a  neutrino  source  is  that  the  neutron/neutrino  profle  is  well  studied,  helping  to  

diferentiate  these  similar  recoils.  With  two  primary  events  observed  in  the  detector,  we  need  

techniques  to  accurately  discriminate  between  them  if  a  CEvNS  event  is  to  be  observed.  
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Figure  5:  Nuclear  recoil  mechanism.  

1.3  Recoil  Discrimination  

One  method  of  classifying  recoils  is  called  the  frst  90  nanoseconds,  or  F90.  This  method  

involves  computing  the  integral  of  the  frst  90  nanoseconds  of  a  signal,  divided  by  its  total  

area,  as  seen  in  Equation  [2].  We  can  plot  the  F90  of  a  detector  run  to  see  the  general  behavior  

of  each  recoil  type,  since  electronic  recoils  have  a  longer  scintillation  process  compared  to  

nuclear  recoils.  Electronic  recoils  will  have  a  lower  F90  value  due  to  this  property,  allowing  

graphical  separation  between  classes,  as  seen  in  Figure[6]  for  a  full  AmBe  calibration  run.  

� 90  
t X  

f 0 i  
90  =  � t  

f  
(2) 

t0  
Xi 
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Figure 6: F90 plot of a AmBe calibration run. Distinct groupings highlight the decay behavior for both 
recoils. 

This  method  is  efective  at  moderate  energy  ranges  (50  keV),  but  there  is  some  ambiguity  

as  we  approach  lower  energies.  If  we  observe  the  F90  plot,  we  can  see  a  region  where  both  

classes  start  to  overlap.  By  sampling  events  near  this  region,  we  see  a  non-linear  relationship  

that  separates  the  classes,  preventing  any  linear  hard  cuts  in  classifcation,  as  seen  in  Figure  

[7] region  IV.  With  potential  issues  in  our  target  energy  range,  we  must  investigate  other 

possible  methods  for  classifying  our  recoils. 

One  proposed  method  of  classifcation  is  the  use  of  machine  learning,  which  has  shown  

success  across  many  domains[8].  Although  a  variety  of  machine  learning  models  exist,  we  are  

interested  in  the  viability  of  neural  networks  in  classifying  our  time-series  data.  The  archi-

tecture  of  each  neural  network  is  largely  dependent  on  how  it  functions;  convolutional  neural  

networks  (CNN)  convolve  input  data  to  smaller  features,  while  recurrent  neural  networks  

(RNN)  can  send  node  outputs  back  to  previous  layers.  

In many ways, neural networks behave similarly to biological neurons. The network 

receives an input and applies a function, where the output of the function is pushed to 

another layer in the model. A weight, or importance, is given at each step, which updates 
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Figure 7: Zoomed in region between 0-60 ADC of selected AmBe run, where the X-axis is converted to
total PEs. Sampled regions are labeled by energy for future reference, with gamma and neutron bands

highlighted. Region IV is an area of interest where F90 cannot be applied.

during the training phase. This process is repeated in varying complexity based on the

network and input data. This structure determines the overall behavior of the model, which

infuences performance for various datatypes.

One  network  of  interest  is  the  dense  neural  network  (DNN),  where  each  node  is  connected 

to  every  node  in  the  next  layer.  This  feeds  forward  all  information  learned  in  the  previous 

layer  to  every  upcoming  input,  providing  a  compact  view  of  all  features  with  variable  weight. 

This  behavior  reduces  gradient  disappearance  while  improving  robustness[9],  allowing  room 

for  generalization  if  the  model  performs  well  on  calibration  data.  The  desired  model  would 

be  able  to  classify  recoils  at  any  amplitude  from  any  detector  run,  which  is  key  for  the 

detection  of  a  CEvNS  event. 

In  order  for  the  DNN,  or  any  neural  network,  to  be  efective,  there  are  a  number  of 

conditions  that  must  be  met[10].  The  primary  consideration  is  whether  you  have  enough  data 

to  properly  train  the  model.  Although  highly  dependent  on  the  datatype  and  model  used,  it  is 

generally  thought  that  1,000  samples  per  class  are  a  minimum  for  classifcation  problems  [11] 

in  the  time-series  domain.  Another  necessary  condition  is  the  use  of  high  quality  data  during 
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Figure 8: Nuclear and electronic recoil samples. Left samples are nuclear recoils descending in energy. 
Right samples are electronic recoils descending in energy. Due to normalization methods, the peak height 

may be larger for less energetic samples. 

the training phase. If the input data doesn’t reliably capture the signal’s true behavior, the 

model cannot learn what the true behavior is. Samples selected as representations of each 

class are shown in Figure [8]. 



             

               

             

                

               

           

 
11 

These conditions are favorably met with data received from CENNS-10. There is a 

large quantity of data available for analysis, with an average of 500,000+ events per run. 

Waveforms are compared across calibration runs to ensure a consistent detector response from 

each recoil, as seen in Figures [9] and [10]. This was performed by verifying the calibration 

PE response, and aligning the initial scintillation peak with recoils of the same energy. Since 

the criteria is satisfed, we can prepare the data for analysis. 

Figure  9:  Nuclear  recoil  samples  from  separate  AmBe  calibration  runs.  Samples  shown  are  taken  from  the  
same  PE  count  in  region  I.  

Figure  10:  Electronic  recoil  samples  from  separate  Co-57  calibration  runs.  Samples  shown  are  taken  from  
the  same  PE  count  in  region  I.  
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2  Literature  Review  

2.1  Observing  CEvNS  

Since  the  age  of  modern  physics,  researchers  have  continued  to  develop  technology  to  ob-

serve  phenomena  on  increasingly  smaller  scales.  Many  contemporary  pursuits  aim  to  detect  

interactions  on  a  subatomic  level,  such  as  neutrino  collisions  and  dark  matter.  Understand-

ing  the  physics  behind  these  exotic  particles  is  crucial  to  the  verifcation  of  the  Standard  

Model  and  many  important  theories.  The  research  behind  these  projects  inspires  new  theory  

and  technological  development,  advancing  both  physics  and  scientifc  knowledge  in  general.  

Neutrino  interactions  imprint  only  small  amounts  of  observable  energy  in  matter,  mak-

ing  them  especially  difcult  to  observe.  One  proposed  interaction  of  neutrinos  are  coherent  

elastic  neutrino  nucleus  scattering  events,  or  CEvNS.  CEvNS  events  are  the  lowest  energy  in-

teractions  between  neutrinos  and  matter  in  the  Standard  Model,  with  a  range  of  1-25  keV[3].  

In  order  to  observe  these  interactions,  new  methods  of  detection  and  analysis  were  needed.  

In  this  review,  we  discuss  current  detector  systems  and  their  related  analysis  frameworks  in  

the  search  for  CEvNS.  

There are many potential difculties in observing CEvNS events due to their low en-                          

ergy.  A  primary  consideration  when  designing  a  CEvNS  detector  is  the  target  material.  

The  coherence  implies  a  neutrino  is  able  to  see  the  nucleus  as  a  whole,  instead  of  individual  

nucleons  at  this  low  energy[12].  Due  to  the  almost  point  like  nature  of  neutrinos,  the  prob-

ability  of  a  collision  is  largely  related  to  the  target’s  atomic  cross-section.  This  introduces  

another  potential  issue,  as  we  want  to  maximize  this  probability,  but  heavier  atoms  react  

less  drastically  to  the  collision.  Too  light  of  a  nucleus,  and  the  probability  to  observe  a  col-

lision  rapidly  decreases.  This  implies  a  “sweet  spot”  of  target  nuclei,  optimizing  the  relation  

between  cross-section  and  collision  dynamics.  

Another  potential  difculty  lies  in  the  analysis  of  detector  data  searching  for  CEvNS  

events.  Neutrinos  are  neutrally  charged  particles,  so  they  are  able  to  interact  directly  with  
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the  target  nucleus  producing  a  nuclear  recoil  signature.  Other  neutrally  charged  particles  

may  interact  with  the  detector,  such  as  neutron  collisions  which  produce  similar  nuclear  

recoil  signatures.  Near  the  CEvNS  energy  threshold,  low  energy  neutrons  can  efectively  

mimic  a  CEvNS  event  further  complicating  analysis[12].  Additional  recoil  signatures  can  

also  be  detected,  such  a  gamma  ray  interaction  that  produces  electronic  recoil  signatures.  

Since  photons  interact  with  the  electrons  surrounding  the  nucleus,  the  signature  has  diferent  

characteristics  compared  to  a  nuclear  recoil.  Although  these  recoils  are  trivial  to  distinguish  

at  energies  above  50  keV,  low  energy  electronic  recoils  can  share  some  parameters  in  existing  

analysis  methods,  such  as  pulse  shape  discrimination.  

Since  there  is  some  restraint  in  the  selection  of  target  materials,  it  is  usually  the  primary  

consideration  when  designing  a  CEvNS  detector.  As  previously  discussed,  the  cross-section  

is  a  critical  parameter,  as  the  Standard  Model  directly  predicts  the  likelihood  of  CEvNS  

events.  If  a  target  nucleus’  parameters  are  well  known  and  the  rate  of  CEvNS  detection  

can  be  found,  a  direct  test  of  the  Standard  Model  can  be  performed[13].  By  observing  

CEvNS  events  with  a  variety  of  detector  materials,  a  confdent  bound  can  be  shown  for  the  

dependence  on  cross-section.  

2.2  CsI  and  LAr  

First  proposed  in  2015,  Cesium-Iodide  crystals  are  a  strong  target  candidate  for  the  

detection  of  CEvNS  events.  The  combined  mass  of  both  atoms  is  within  the  desired  range  

for  observation,  with  a  14  kg  detector  theoretically  capable  of  detecting  550  CEvNS  events  

per  year[2].  Since  the  response  of  this  crystal  to  nuclear  recoils  is  well  studied,  a  low  energy  

observational  threshold  around  7  keV  can  be  demonstrated  which  is  well  within  the  CEvNS  

energy  threshold.  The  COHERENT  collaboration’s  CsI  detector  made  the  frst  observation  

of  a  CEvNS  interaction  in  2017  at  Oak  Ridge  National  Laboratory’s  Spallation  Neutron  

Source  (SNS)[13].  An  advantage  of  utilizing  a  well  known  spallation  source  can  be  seen  in  

the  analysis  of  data  from  CsI,  as  researchers  were  able  to  distinguish  the  delayed  response  
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Figure  11:  Flux-averaged  CEvNS  cross  section  as  a  function  of  neutron  count[14].  The  green  curve  
represents  Klein-Nystrand  form  factor,  while  the  black  curve  assumes  unity.  

of  incident  neutrons  to  neutrinos  produced  from  decay.  Since  the  recoil  signatures  of  these  

two  particles  at  low  energy  are  very  similar,  behaviors  such  as  this  must  be  incorporated  

into  analysis  to  distinguish  the  events  with  high  confdence.  One  potential  issue  with  a  

similar  analysis  would  be  the  observation  of  CEvNS  events  without  a  spallation  source,  as  no  

timing  information  would  be  available  to  separate  neutron  from  neutrino  recoil  distributions.  

Additionally,  researchers  have  noted  considerations  of  smearing  and  bin  choice  can  have  a  

large  impact  on  the  constraining  of  fnal  results  of  current  analysis[15].  

Argon  has  also  been  discussed  as  another  material  with  a  desirable  cross-section  and  mass  

for  CEvNS  event  detection[16].  Commissioned  in  2016,  COHERENT’s  CENNS-10  detector  

is  a  liquid  argon  based  scintillator  with  a  low  energy  threshold.  The  detector  was  upgraded  

after  initial  engineering  runs  to  see  up  to  150  CEvNS  events  per  year,  which  has  led  to  an-

other  subsequent  observation  of  CEvNS[17].  Analysis  frameworks  for  data  from  CENNS-10  

includes  pulse  shape  discrimination,  which  performs  well  on  typical  energies.  Since  CENNS-

10  is  operated  in  Neutrino  Alley  at  the  SNS,  analysis  considers  timing  information  similar  

to  the  CsI  detector,  although  CENNS-10  is  slightly  further  from  the  spallation  source.  Re-
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sults  indicate  that  although  this  analysis  can  detect  CEvNS  events,  it  cannot  be  used  for  

the  whole  energetic  range  of  events  within  the  detector.  There  is  a  signifcant  portion  of  

recorded  events  where  test  values  from  pulse  shape  discrimination  of  nuclear  and  electronic  

recoils  overlap.  Additionally,  CEvNS  events  that  occur  within  the  main  arrival  window  of  

beam-related  neutrons  will  be  lost  if  the  delay  time  is  fully  considered.  

2.3  Reactor  CEvNS  

Several  CEvNS  experiments  search  specifcally  for  reactor  produced  neutrino  events,  such  

as  CONNIE[18],  CONUS[19]  and  νGEN[20].  CONNIE  is  a  charge  coupled  device  (CCD)  

based  detection  system,  housed  at  the  Angra  dos  Reis  nuclear  plant  outside  Rio  de  Janeiro,  

Brazil.  The  CCDs  have  a  pixel  dimension  of  15|mum  x  15|mum,  with  nearly  8  million  

pixels  in  their  3cm  model.  Currently,  the  collaboration  is  upgrading  their  systems  to  observe  

below  10  keV  events  and  improve  shielding  around  the  reactor.  Related  analysis  eforts  are  

being  updated  to  include  the  new  sensitivity,  but  similarly  to  detectors  at  the  SNS,  timing  

information  plays  a  crucial  role  for  a  CEvNS  observation.  

The  CONUS  experiment  is  another  reactor  based  CEvNS  detector  located  in  Brokdorf,  

Germany.  CONUS  deploys  a  germanium  target  positioned  17m  from  the  reactor  core,  which  

provides  an  intense  profle  of  lower  energy  radiation[19].  In  an  analysis  report  published  in  

2021,  CONUS  presents  a  new  upper  bound  on  CEvNS  event  rates  for  their  germanium  target  

and  the  calculated  quenching  factor.  The  expected  rate  of  observed  events  per  year  is  11.6,  

which  may  not  be  high  enough  to  classify  the  event  within  the  data  collected.  Upgrades  to  

the  system  are  currently  planned,  but  current  analysis  methods  may  not  detect  a  CEvNS  

event.  Further  considerations  to  mitigate  background  and  improve  signal  to  noise  ratios  are  

considered.  νGEN  is  another  germanium  based  detector  located  in  a  reactor  facility  outside  

of  Moscow,  Russia.  Data  is  currently  being  taken,  but  initial  analysis  shows  an  observable  

range  within  the  CEvNS  threshold.  Extensive  eforts  to  compare  backgrounds  for  ON/OFF  

reactor  operations  has  been  completed,  with  additional  1.0  kg  and  1.4  kg  germanium  targets  
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being  prepared  for  installation[20].  An  internal  sodium  iodide  (NaI)  veto  system  is  being  

tested  to  identify  backgrounds  and  reject  collection  by  the  DAQ.  

Liquid  time  projection  chambers  have  shown  high  sensitivity  to  observe  low  energy  events  

and  their  trajectory  through  the  detector  material.  Experiments  such  as  XENONnT  indi-

rectly  search  for  CEvNS[21],  as  neutrinos  will  serve  as  a  primary  background  for  dark  matter  

searches.  Since  weakly-interacting  massive  particles  (WIMPs)  are  expected  to  produce  nu-

clear  recoils  similar  to  CEvNS,  identifying  their  recoil  signatures  is  crucial  for  confdent  

detection  at  these  low  energies.  The  XENONnT  detector  is  a  1  ton  dual-phase  xenon  system  

located  at  the  Laboratori  Nazionali  del  Gran  Sasso  in  Italy,  with  an  efective  submersion  

under  3600m  of  water.  Scintillaiton  is  captured  by  dual  PMTs,  with  a  design  similar,  but  

much  larger,  than  COHERENT’s  CENNS-10  detector.  Work  is  underway  on  background  

calibrations  with  a  variety  of  sources  to  observe  the  efect  on  sensitivity,  with  expected  results  

being  published  in  the  near  future.  

2.4  Discrimination  Methods  

Several  pulse  shape  discrimination  methods  have  been  used  by  researchers  to  distinguish  

electronic  from  nuclear  recoil  responses.  COHERENT’s  framework  focuses  on  the  frst  90  

nanoseconds,  or  F90.  The  F90  value  is  a  scalar  that  relates  the  area  of  the  frst  90  nanosec-

onds  of  a  waveform  to  its  total  area.  This  method  works  well  as  it  relies  on  the  physical  

diference  in  light  output  between  the  two  recoils;  electronic  recoils  have  a  longer  decay  pro-

fle  than  nuclear  recoils,  so  more  area  is  distributed  across  the  event  sample.  This  results  in  a  

lower  F90  value  for  electronic  events,  which  can  be  easily  distinguished  from  a  nuclear  recoil’s  

higher  F90  when  plotted.  As  the  observed  energy  is  decreased,  the  full  behavior  of  each  recoil  

cannot  be  guaranteed  to  match  its  higher  energy  counterpart,  leading  to  similar  F90  values  

for  both  events.  Additional  methods  such  as  fgure  of  merit,  or  FOM,  have  been  discussed  

to  distinguish  recoils[22].  In  contrast  to  F90,  FOM  primarily  considers  the  full  width  at  half  

max  (FWHM)  as  its  main  parameter.  This  method  may  work  for  data  from  CENNS-10,  as  
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similar  energy  nuclear  and  electronic  recoils  will  have  a  diferent  max  amplitude,  even  after  

normalization.  Several  other  pulse  shape  discrimination  techniques  are  available  to  distin-

guish  nuclear  from  electronic  recoils,  such  as  zero  crossing  or  discrete  wavelet  transforms.  

Since  F90  was  shown  to  be  efective  for  data  from  CENNS-10,  comparisons  to  other  pulse  

shape  discrimination  methods  have  not  been  published.  

Machine  learning  has  been  utilized  by  many  domains  for  classifcation  problems  such  as  

high  energy  and  plasma  physics.  Although  many  forms  of  machine  learning  exist,  several  

model  types  are  discussed  for  the  classifcation  of  time  series  data.  Recurrent  neural  networks  

(RNN),  convolutional  neural  networks  (CNN),  and  long  short  term  memory  (LSTM)  are  

among  the  many  networks  utilized  for  classifcation.  In  [23],  RNNs  were  shown  to  be  efective  

at  problems  requiring  minimal  backpropagation.  This  efect  can  be  magnifed  the  longer  the  

network  is  run,  leading  to  a  disappearing  or  exploding  gradient.  Complex  data  with  many  

relevant  features  may  require  longer  training  times,  which  lead  to  the  development  of  LSTMs  

to  combat  the  issue.  LSTMs  can  introduce  their  own  training  problems  and  are  generally  

not  recommended  for  time  series  classifcation.  Multi-Layer-Perceptrons  (MLP)  have  shown  

success  in  classifcation  problems  and  work  well  handling  a  variety  of  data[24],  with  densely  

connected  MLPs  sacrifcing  performance  for  improved  accuracy.  The  dense  feed-forward  

behavior  allows  the  whole  signal  to  be  considered  at  the  frst  layer,  which  could  preserve  

important  features  at  the  cost  of  increased  computational  demand.  This  model  performs  

quite  well  on  data  where  the  distribution  vs  time  is  consistent,  where  temporal  information  

predominantly  informs  the  behavior.  Shifts  in  the  timing  distribution  of  waveforms  are  

considered  later  in  this  paper,  with  the  related  efects  on  network  response  discussed  in  

future  work.  

Many  analytical  tools  are  available  to  help  researchers  distinguish  nuclear  from  electronic  

recoils,  but  few  publications  exist  on  the  comparison  of  pulse  shape  discrimination  techniques,  

or  to  these  techniques  and  machine  learning.  Evidence  shows  that  methods  such  as  F90  have  

a  high  degree  of  accuracy  over  a  large  energy  range  of  detector  samples,  but  may  not  have  
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confdence  towards  the  CEvNS  energy  threshold.  Research  suggests  the  machine  learning  

models,  such  as  dense  MLPs,  may  be  able  to  classify  events  at  a  lower  energy  than  F90.  

With  few  publications,  additional  research  is  required  on  the  comparison  of  these  two  

methods.  To  establish  any  relevant  metric,  several  aspects  must  be  fully  investigated.  The  

lowest  energy  where  each  method  is  confdent  in  classifcation,  the  generality  of  both  tech-

niques,  and  their  relation  to  the  larger  body  of  physics  are  all  questions  that  must  be  explored.  

The  detection  of  CEvNS  events  have  implications  beyond  neutrino  characterization,  pushing  

researchers  closer  to  the  observational  limit  of  dark  matter  interactions.  The  improvement  

and  comparison  of  analytical  methods  at  higher  energies  could  improve  or  inspire  detection  

methods  for  lower  energy  physics,  which  is  a  primary  goal  of  the  community  at  large.  
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3  Method  

In the following section, a complete data pipeline from detector DAQ to analysis is 

presented. Several programming languages are discussed such as ROOT and C++, but 

most of this work relies on Python and several key packages. These languages are referenced 

as they appear in the pipeline, with all supplementary code provided in Appendix A. A 

brief description of non-trivial packages is given in Appendix B. Parameters for our machine 

learning model are briefy discussed, with more detail given in the Results section of this 

paper. 

To begin our analysis, we start at the detector. When an event is recorded by CENNS-10, 

the data is output in the form of a ROOT fle and saved to ORNL managed servers. ROOT 

is a proprietary language developed by researchers at CERN to better handle the large and 

complex nature of data in particle physics. For our purposes, a preliminary cut is made to 

reduce the size of the fle to several gigabytes before transferring from the high-performance 

cluster which retains all of COHERENT’s data. This is accomplished by a C++ script 

which collects events based on our parameter selection, such as total area of each waveform. 

The preliminary cut is made to remove events above our target maximum energy, and with 

another to isolate recoils within a set F90 bound. This allows us to obtain pure recoil 

samples from, for example, a calibration run which uses Americium-Beryllium (AmBe) as a 

neutron source. We can similarly obtain electronic samples by selecting a run that is subject 

to a direct gamma source, such as cobalt-57. By building datasets that contain only pure 

electronic or nuclear responses, we can begin to process the data and prepare it for analysis. 

For  the  rest  of  this  work,  we  utilize  Python  as  our  main  language  which  is  deployed  as  

a  modifed  container  in  Docker.  This  container  provides  a  reproducible  virtual  environment  

with  all  the  necessary  packages  and  custom  mounting,  allowing  consistent  interpretation  over  

all  devices.  In  our  deployment,  the  standard  TensorFlow  image  is  modifed  with  additional  

packages  such  as  Seaborn  and  UpRoot,  and  mounted  to  a  directory  we  can  access  with  

Git  commands.  This  step  provides  code  consistency  across  personal  hardware,  Docker,  and  
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GitHub  repositories,  and  ensures  the  correct  package  versions  are  maintained.  We  can  now  

initialize  a  Jupyter  server  with  our  modifcations  and  pull  our  data  into  Python.  

There are several packages available that can process ROOT fles, such as UpRoot and 

PyRoot, which are used to import the data and convert them into arrays. When the data has 

been loaded, we can use Pandas dataframes to make various cuts and bin our target energy 

ranges. Another beneft to processing in Python is the ability to quickly output smaller csv 

fles, so that we can build a collection of individual datasets that contain only electronic or 

nuclear recoils at each specifc energy range. This helps to simplify data management and 

greatly helps with the reproduction of analysis results. After the initial Python processing, 

we will have 6 separate fles: 3 fles for electronic recoils at a low, medium, and high energy, 

and 3 fles for nuclear recoils at low, medium, and high energy. Our low, medium and 

high energy ranges contain waveforms with 100-210 PEs, 211-340 PEs and 341-520 PEs 

respectively. From the initial 500,000+ events in both runs, each csv fle now contains only 

2,000 samples, resulting in a large reduction of handled data. 2,000 events were chosen as an 

arbitrary minimum for training/testing, but research suggests downsampling to 1,000 events 

may still provide decent training. 

Now that each class and energy range of our recoils has been isolated, we can process 

one energy range for both classes to create our training and testing datasets. The csv fles 

are concatenated and stored in a dataframe, where we now have 4,000 rows of events. It 

is important to normalize the data before assigning class labels, which would otherwise be 

included in the calculation. In this case, we compute the integral of each event and set our 

normalization to 1. Each of the events will now have unit area, at which point we add our 

class labels. To remove any bias from event selection, we shufe the dataset multiple times 

and separate our labels into a new dataframe. It is critical to not reshufe after this stage, 

as the label dataframe is ordered with each event. Additional shufing after class separation 

would mismatch the event label during training, invalidating any results. 

The  data  is  now  ready  to  be  split  into  training  and  testing  datasets.  Following  standard  
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convention,  a  train  to  test  ratio  of  3:1  was  chosen  for  our  model[25].  There  are  now  3,000  

samples  to  train  and  1,000  to  test,  which  have  been  stored  in  separate  dataframes.  We  can  

now  initialize  our  model  and  prepare  for  the  training  process.  To  start,  we  generate  a  dense  

neural  network  (DNN)  with  4  layers  using  the  Python  module  TensorFlow.  The  frst  layer  

is  simply  the  input  and  is  the  length  of  our  signal.  The  second  and  third  layers  are  densely  

connected,  with  a  node  size  of  24  and  128  respectively.  The  fnal  layer  is  a  binary  classifer  

with  a  sigmoid  activation  since  we  only  have  two  types  of  recoil  events.  The  general  structure  

of  the  network  is  shown  in  Figure  [12].  

Figure  12:  Generalized  structure  of  our  dense  network.  X’  and  X”  are  the  number  of  nodes  in  Dense  Layers  
I  and  II,  respectively.  

It  is  time  to  set  the  optimizer,  learning  rate,  and  epochs  for  training.  The  Adam  optimizer  

was  chosen  with  a  .001  learning  rate,  over  20  epochs.  The  learning  rate  determines  how  much  

the  model  can  adjust  its  weights  each  update.  Epochs  refect  the  total  number  of  training  

cycles,  which  restart  after  every  samples  has  been  fed  through  the  model.  The  amount  

of  training  time  is  arbitrary  at  this  stage  since  it  will  be  adjusted,  depending  on  model  

performance,  but  20  is  a  reasonable  start.  Generally,  if  increasing  the  total  epochs  doesn’t  
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provide  increased  accuracy,  the  model  itself  needs  adjustment.  All  the  parameters  and  inputs  

for  the  model  are  now  ready,  so  training  can  begin.  To  evaluate  the  model’s  performance,  

we  can  review  the  accuracy  and  cross-entropy  loss  of  the  model  over  time.  These  values  are  

plotted  to  gain  a  sense  of  how  well  the  model  learns,  and  should  follow  the  general  trend  

of  increasing  accuracy  and  decreasing  loss.  Another  method  of  determining  your  model’s  

performance  is  to  generate  additional  datasets  independent  from  data  used  during  training  

and  testing.  A  preferred  method  is  to  process  new  calibration  runs  to  obtain  similar,  but  

unique  events,  so  we  can  test  using  data  that  the  model  has  never  seen.  This  new  dataset  can  

be  manually  fed  through  the  testing  function  of  the  model,  which  will  predict  each  event’s  

class  based  on  prior  training.  This  new  dataset’s  accuracy  is  another  indicator  of  the  model’s  

performance,  and  is  a  standard  method  for  validating  overall  model  accuracy.  From  here,  

any  of  the  parameters  in  the  model  can  be  adjusted,  such  as  node  size,  learning  rate,  or  

training  time.  Modifcations  to  the  network  and  parameter  selection  are  discussed  later  in  

this  paper.  

Figure  13:  Averaged  waveform  of  each  class  from  our  highest  energy  samples.  

One  further  consideration  is  to  generate  simulated  events  from  real  data,  so  that  other  

energy  ranges  can  be  investigated.  In  the  case  of  data  from  CENNS-10,  signals  producing  

less  than  40  photoelectrons  can  complicate  traditional  analysis  methods  such  as  F90,  since  

testing  parameters  begin  to  overlap.  To  investigate  this  region,  we  sum  all  the  events  from  
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one  class  and  normalize,  to  produce  an  average  density  distribution  for  that  class,  as  seen  

in  Figure  [13].  This  can  be  used  to  simulate  signals  based  on  the  probability  of  individual  

photoelectrons  hitting  the  detector  at  each  time  interval,  which  is  obtained  from  our  average  

waveform.  By  applying  a  random  sampling  algorithm  based  on  this  distribution,  we  can  

generate  locations  of  random  photoelectrons.  By  saving  those  locations  in  a  list,  we  can  

iterate  through  and  place  Gaussian  peaks  at  each  photoelectron  location  to  build  up  our  

signal.  The  peak  shape  was  determined  using  a  chi-squared  test  of  best  ft,  and  normalized  

to  the  calibration  response  of  1  photoelectron.  When  the  peaks  have  been  placed,  we  can  add  

in  the  electronic  noise  from  instruments  in  CENNS-10.  These  values  were  calculated  from  

several  runs,  and  used  to  create  a  Gaussian  noise  flter  to  add  on  top  the  simulated  waveform.  

The  construction  of  nuclear  recoil  signals  can  be  seen  in  Figures  [14]-[16]  in  several  steps,  

with  electronic  recoils  receiving  the  same  treatment.  Results  on  testing  with  simulated  data  

are  presented  later  in  this  paper.  

Figure  14:  Fitted  Gaussian  peak  to  single  PE.  
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Figure  15:  Fitted  Gaussian  profle.  

Figure  16:  Fitted  Gaussian  profle,  downsampled  to  real  data  sample  rate.  Axis  change  from  downsampling  
and  lead  time.  Final  peak  used  is  cut  from  bins  46-54.  
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4  Results  

To  determine  the  relative  performance  of  our  model,  we  must  compare  the  results  to  

existing  methods  of  background  discrimination.  A  common  method  used  to  identify  recoils  

is  the  previously  discussed  F90,  or  frst  90  nanoseconds.  This  method  computes  the  area  of  

the  frst  90  nanoseconds  of  each  signal,  divided  by  the  total  area.  Each  event’s  F90  value  

can  be  plotted  to  generate  a  heatmap,  showing  the  general  behavior  separating  each  class.  

Since  the  scintillation  decay  is  much  faster  for  nuclear  recoils,  we  expect  those  events  to  have  

a  higher  F90  value.  We  can  verify  this  grouping  method  by  randomly  sampling  events  from  

each  cluster,  and  checking  whether  it  is  the  expected  recoil  type.  This  method  is  robust  at  

typical  energies,  but  becomes  less  confdent  as  total  photoelectrons  decrease.  In  our  sampled  

energy  regions,  F90  is  approximately  99.99%  accurate  at  typical  constraints  (nuclear  recoils  

F90  ≈  .7,  electronic  recoils  F90  ≈  .3).  Misclassifcations  can  occur  with  anomalous  signals,  

or  as  a  result  of  photon  statistics[26].  At  very  low  energies,  both  classes’  F90  scores  can  

overlap,  as  we  can  see  in  low  PE  simulated  events.  

Figure  17:  Performance  on  training  data  from  region  I.  Accuracy  reaches  99%  at  epoch  12.  

At  our  three  energy  ranges  with  real  data,  the  neural  network  classifes  recoils  with  

similar  accuracy  to  the  F90  method,  approximately  99%.  When  observing  the  training  of  

each  energy  range,  we  can  note  the  epochs  required  to  reach  maximum  accuracy  increases  
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Figure  18:  Performance  on  training  data  from  region  II.  Accuracy  reaches  99%  at  epoch  17. 

Figure  19:  Performance  on  training  data  from  region  III.  Accuracy  reaches  98%  at  epoch  20.  Retraining 
with  fresh  weights  fnds  99%  at  epoch  25. 

as  energy  decreases,  as  shown  in  Figures  [17]-[19].  Training  time  was  increased  for  networks 

until  asymptotic  accuracy  was  observed,  and  only  the  frst  20  epochs  are  shown  for  relative 

comparison.  This  behavior  is  expected,  but  suggests  there  is  still  room  to  investigate  lower 

energy  regions. 

Since  the  model  was  shown  to  accurately  predict  classes  from  calibration  runs,  we  can 

apply  the  model  to  our  simulated  data.  We  generate  various  energy  ranges  by  controlling 

the  number  of  photoelectrons  the  algorithm  will  produce,  and  bin  them  accordingly.  The 

frst  simulation  created  samples  from  the  region  around  where  F90  can  no  longer  be  applied, 

between  24-40  PEs[26].  The  second  and  third  simulations  contain  events  with  12-24  PEs, 

and  7-12  PEs,  respectively,  with  selected  samples  of  20  PEs  shown  in  Figure  [20].  The  fnal 
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generated  dataset  contains  events  with  4-7  PEs  (≈15  keV)  and  is  the  lowest  threshold  we  

test  against  our  model,  

Figure  20:  Simulated  samples  from  energy  region  IV  in  Figure  7.  Samples  contain  20  PEs.  

Moderate  performance  was  observed  in  the  frst  two  energy  ranges,  with  a  testing  perfor-

mance  around  90%.  It  is  interesting  to  note  at  these  energies,  the  simulated  and  real  events  

after  normalization  appear  visually  similar,  but  their  appearance  becomes  less  pronounced  

in  the  7-12  photoelectron  range,  along  with  a  decrease  in  model  performance.  The  lowest  

energy  events  had  the  least  accuracy  of  all  tested  data,  achieving  a  maximum  of  80%.  

Figure  21:  Performance  on  24-40  PE  simulated  data,  our  highest  energy  range  correlating  to  region  IV.  
Asymptotic  accuracy  of  89.5%  observed  in  epoch  20.  Increase  training  time  observed  negligible  accuracy  

gain,  while  loss  plateaus  around  .35.  
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ther  development  of  the  model  could  lead  to  lower  classifcation  energies  and  total  generality.  

Since  experimental  data  may  have  a  small  time  shift  from  the  DAQ  trigger,  we  sought  to  es-

tablish  a  baseline  of  performance  on  calibration  data.  Modifcations  to  the  model  structure,  

parameter  selection,  and  other  techniques  to  introduce  generalization  are  discussed  later  in  

this  paper.  
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5  Conclusion  

The application of dense neural networks has been shown to be efective for classifying 

calibration recoils from the CENNS-10 detector. A major motivation of this research was to 

compare the efectiveness of existing analysis frameworks with our machine learning method 

with events below 100 keV . Results indicate that our dense network may classify recoils 

at energies one order of magnitude lower than F90, which approaches the CEvNS energy 

domain around 10 keV. Although the performance exceeded our initial expectations, we are 

eager to further generalize our model for experimental runs and simulated data. A network 

able to classify recoils at the CEvNS energy threshold, on any run, would be a huge success 

for this research, and is our primary motivation moving forward. There are several proposals 

to address this topic, which are discussed in the following section. We are excited to continue 

this research and look forward to future results. 
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6  Current  Eforts  

The  model’s  performance  on  calibration  and  simulated  data  was  adequate  for  our  initial  

research,  but  we  seek  to  further  generalize  the  model  to  classify  experimental  runs.  As  previ-

ously  discussed,  calibration  data  acquisition  is  triggered  by  the  arrival  of  2  photoelectrons  at  

each  PMT,  so  that  each  sample’s  main  scintillation  peak  occurs  approximately  in  the  same  

bin.  Since  the  accuracy  of  our  model  is  likely  tied  to  the  consistent  temporal  distribution  of  

calibration  data,  we  must  consider  data  when  the  trigger  mechanism  is  not  identical  across  

samples.  

A simple case to highlight this potential issue would be a waveform that has a shorter 

lead time, so the main peak is slightly to the left as seen in Figure[22]. Since our trained 

model has given null weights to data before bin 372, a peak falling in this region would not 

be considered an important feature, likely leading to misclassifcation. Since experimental 

data can have a range of possible lead times, we must adjust the model or augment the data 

to compensate for this shift. We propose several modifcations to the network’s topology, 

along with possible augmentation methods for the experimental data. 

Figure  22:  Time-shifted  recoil  vs  calibration  recoil  of  similar  energy.  

Before  discussing  our  proposals,  it  is  important  to  note  the  simple  issue  presented  high-

lights  the  robustness  of  the  F90  framework.  Since  the  F90  value  is  calculated  from  the  trigger  

point,  it  can  shift  with  the  data  freely  without  any  parameter  adjustment.  This  means  the  
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F90  value  for  nuclear  recoils  from  calibration  and  experimental  data  should  be  identical,  

resulting  in  no  signifcant  change  in  how  the  analysis  is  performed.  This  robustness  does  

not  extend  to  the  target  region  below  25  keV,  so  there  is  still  motivation  for  improving  our  

network.  

Since  the  main  motivation  for  generality  comes  from  a  potential  temporal  shift  in  the  

waveform,  we  must  consider  the  addition  of  new  layer  architectures  beyond  our  dense  con-

nections.  A  popular  choice  in  time  series  data  with  temporal  feature  variance  is  the  use  

of  single  dimension  convolutional  layers.  Convolutions  apply  a  vector  flter,  typically  much  

smaller  than  your  input  length.  This  flter  is  applied  sequentially  through  your  data,  with  

flter  size  and  stride  length  being  the  main  parameters.  This  technique  aims  to  reduce  the  

input  data  to  its  important  features,  mitigating  reliance  on  exact  timing  information.  There  

would  be  some  subtlety  in  the  implementation  of  a  convolutional  layer  for  our  data,  and  

could  be  an  interesting  optimization  problem  in  itself.  In  order  to  compensate  for  the  lead  

time  variance,  the  convolutional  flter  would  need  to  be  able  to  handle  the  entire  range  of  

temporal  shifts,  and  collapse  the  main  peak  information  into  the  same  bin,  regardless  the  

shift.  It  is  possible  a  proper  convolution  cannot  be  performed  to  result  in  the  necessary  

criteria,  so  additional  layer  architectures  are  also  considered.  

Similar to convolutional layers, pooling layers seek to extract the most relevant features 

from a subset of data. In contrast to convolutions, pooling does not overlap when striding 

nor does it apply a mathematical function, it only takes the maximum value within a set 

bin range. These maximum values are collected into a new vector, with a reduced length 

proportional to the pool size. One proposed use of pooling in our model would be to apply 

pooling to the frst 400 bins, and passing this parameter forward independent from the input. 

Further questions must be addressed if a pooling layer is added to the network; do we keep 

the original input or remove the 400 bins when feeding forward? It is believed the parameters 

would compete if the full waveform was included, but that has yet to be fully determined. 
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Figure  23:  1-Dimensional  Convolution.  Filter  performs  elementwise  multiplication  then  sums  the  shaded 
cells.  The  flter  steps  forward  one  input  and  repeats  the  operation. 

Before making any modifcations to the network, we seek to evaluate the current model

on augmented data. The proper augmentation of data may preserve important features

while minimizing the efects of any temporal shift in our sample. We consider two primary

changes to our data; the shifting of the initial scintillation peak from the calibration location

around bin 370 and dimensionality reduction. The frst method can be accomplished with our

simulated dataset, as we control all of the input parameters. When simulating a sample, we

can randomly generate a bin shift value to pad or delete our leading entries, then remove or

add, respectively, trailing zeroes to maintain the proper sample length. The process is more

complicated if we wish to augment calibration data, as removing entries or adding padding

will introduce zeroes to a non-zero vector, leaving a fatline that abruptly changes to noise.

We can add noise to the zero components, but even a slightly diferent noise distribution

could be detected as a feature by the model, adding signifcant bias. Current eforts are

primarily shifting the simulated data, but we plan to revisit modifying calibration data at a

later date.

A  fnal  consideration  before  simulating  time-shifted  samples  is  performing  F90  analysis  on 
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Figure  24:  Max  Pooling  Node.  Only  the  largest  value  (shaded)  from  a  given  subset  is  kept  for  the  next  
layer.  Subsets  may  or  may  not  overlap,  depending  on  your  parameter  selection.  

current  simulation  waveforms.  Although  the  samples  appear  visually  similar  to  the  expected  

class,  it  is  important  they  capture  the  underlying  behavior.  Even  though  the  simulation  

may  generate  distinct  recoils,  for  the  region  of  interest,  it  may  be  too  distinct.  The  region  of  

interest  is  where  the  F90  distributions  overlap,  not  near  the  distinct  bands  of  both  recoils.  

Initial  fndings  show  that  selected  nuclear  samples  are  close  to  the  expected  F90  value  of  

.3-.5,  but  a  full  simulation  of  2-150  PE  waveforms  is  required.  It  is  believed  that  a  sample  

of  1000  waveforms  for  each  class,  at  each  PE,  may  be  sufcient.  

Dimensionality  reduction  methods  are  also  discussed  as  a  way  to  mitigate  both  the  tem-

poral  shift  and  sparse  entries  within  the  data.  Sparsity  refers  to  the  amount  of  featureless  

data  within  the  sample,  such  as  noise,  that  is  included  in  the  training  process.  We  have  

neglected  to  consider  sparsity  up  to  this  point  as  training  times  were  somewhat  reasonable,  

but  if  we  continue  to  expand  the  topology  of  our  network,  computational  costs  should  be  

considered.  Although  there  are  many  reduction  methods,  we  are  primarily  interested  in  prin-

cipal  component  analysis,  or  PCA.  This  technique  aims  to  transform  the  original  input  to  a  

reduced  dimension,  with  the  most  important  features,  or  principal  components,  as  leading  
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entries.  If  component  analysis  fnds  the  initial  peak  to  be  the  most  important  feature,  it  is  

likely  to  reduce  this  information  to  the  same  index  for  all  transformed  samples,  reducing  or  

removing  any  efects  from  temporal  shifting.  It  is  expected  that  noise,  or  sparsity,  will  be  

an  unimportant  feature  and  either  removed,  or  placed  at  the  trailing  end  of  the  transfor-

mation.  The  main  parameter  we  can  adjust  is  the  amount  of  principal  components  kept  in  

the  fnal  transformation,  which  introduces  some  complexity  across  our  target  energy  ranges.  

Research  on  determining  how  many  components  are  optimal  for  our  classifcation  is  ongoing,  

with  initial  results  suggesting  between  100-200  to  be  sufcient.  

Initial results from testing are promising, but research into these eforts is ongoing. We 

expect conclusive results in the near future as the proposed changes do not require a total 

reconfguration of the network, and the changes to our simulation algorithm have been 

implemented. The comparison of experimental data to the new simulation is underway. 
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7  Appendix  

A  Codes  
The  following  network  was  used   to generate   all performance  metrics.   Arrows  

indicate  margin  overfow,   not indentations.   This  was deployed    on a  modifed  
Tensorfow  container  with   Docker,  as  a Jupyter  Notebook.   Line  breaks  are delimiters   
between  cells.  The  Docker  image  and  compose   fle, along  with  various labelled   datasets,   
are available at https://github.com/siehienp20/USD_Ms_Thesis . 

This  code  was  designed  to  be  interpreted  in  a  Jupyter  Notebook,  but  can  be  ran  as  a  
stand  alone  script.  In  order  to  run  the  .py,  you  will  need  the  imported  samples  in  the  same  
directory.  Imported  samples  need  to  be  in  dimensions  of  (X,1876).  

The second code is a preprocessing script to bin up our energy ranges and export to                                
csv.  The  context  of  imported  data  is  important,  as  ROOT  fles  have  distinct  data  structures  
depending  on  DAQ.  If  processing  other  ROOT  fles,  you  will  need  to  replace  the  appropriate  
keys.  For  example,  ’s’  is  the  raw  waveform  for  our  data.  The  processing  only  needs  the  raw  
waveform  and  total  area,  ’a’,  in  this  case.  

Lastly,  we  present  the  code  used  to  simulate  region  IV  samples.  The  amount  of  PEs  
generated  can  be  adjusted  by  the  random  variable  function  inside  peak_gen(),  here  20  is  
used  as  an  example.  The  fnal  loop  can  be  adjusted  for  desired  sample  size,  but  20,000  is  
recommended  as  an  upper  bound  if  working  in  Jupyter.  These  parameters  generated  the  
waveforms  seen  in  Figure  [20].  

https://github.com/siehienp20/USD_Ms_Thesis
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Dense Neural Network in Python

import numpy as np 
import pandas as pd 
import tensorflow as tf 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
from sklearn.utils import shuffle 
from sklearn.preprocessing import normalize 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import confusion_matrix 
from sys import getsizeof 
from sklearn.metrics import accuracy_score 

ER_data_pack = pd.read_csv(’electronic_recoil_samples.csv’, header=None) 
ER_data_pack = normalize(ER_data_pack) 
NR_data_pack = pd.read_csv(’nuclear_recoil_samples.csv’, header=None) 
NR_data_pack = normalize(NR_data_pack) 

plt.plot(NR_data_pack[360], ’g-’) 
plt.plot(ER_data_pack[340], ’r:’) 
plt.show() 

NR_data_pack[1876]=1 
ER_data_pack[1876]=0 
NR_data_pack = pd.DataFrame(NR_data_pack) 
ER_data_pack = pd.DataFrame(ER_data_pack) 

combo_data_pack=pd.concat([NR_data_pack, ER_data_pack.reindex(columns = 
-> NR_data_pack.columns)],ignore_index =True) 

combo_shuffle = shuffle(combo_data_pack) 
combo_shuffle = shuffle(combo_shuffle) 
combo_shuffle = shuffle(combo_shuffle) 
combo_shuffle.reset_index(inplace=True,drop=True) 

train_data = combo_shuffle.drop([1876], axis=1) 
train_data = np.square(train_data) 
train_data = np.sqrt(train_data) 
train_data = normalize(train_data) 

y = combo_shuffle[1876] 
y = np.array(y) 
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X_train, X_test, y_train, y_test = train_test_split(train_data, y, test_size 
-> = 0.25, random_state = 100) 

X_val, X_val_test, y2_train, y2_test = train_test_split(train_data, y, 
-> test_size = .01, random_state = 101) 

len(X_test) 

for var in optimizer.variables(): 
var.assign(tf.zeros_like(var)) 

tf.keras.backend.clear_session() 
model_1 = tf.keras.models.Sequential() 
model_1.add(tf.keras.layers.Input(shape=(1876,))) 
model_1.add(tf.keras.layers.Dense(24, activation=’relu’)) 
model_1.add(tf.keras.layers.Dense(128, activation=’relu’)) 
model_1.add(tf.keras.layers.Dense(1, activation=’sigmoid’)) 
model_1.summary(line_length=55) 
loss = tf.keras.metrics.binary_crossentropy 
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3) 
metric_list = [tf.keras.metrics.BinaryAccuracy()] 
model_1.compile(loss=loss, optimizer=optimizer, metrics=metric_list) 

y_pred_vals_model_1 = model_1.predict(X_train, batch_size=512, verbose=1) 
y_pred_dense_model_1 = (y_pred_vals_model_1 < 0.5).astype(int) 
print(len(y_pred_vals_model_1)) 
acc_dense_model_1 = accuracy_score(y_train, y_pred_dense_model_1) * 100 
print(f"Overall␣accuracy:␣{acc_dense_model_1:.2f}%") 

%%time 
history_1 = model_1.fit(X_train, y_train, epochs=20, verbose=1, 

-> validation_data=(X_val, y2_train)) 

acc_1_train = np.array(history_1.history["binary_accuracy"]) * 100 
loss_1_train = np.array(history_1.history["loss"]) 

acc_1_val = np.array(history_1.history["val_binary_accuracy"]) * 100 
loss_1_val = np.array(history_1.history["val_loss"]) 

epochs_1 = np.arange(1, len(acc_1_train) + 1, 1) 
plt.rcParams[’axes.linewidth’] = 1 

fig_metrics_simple_1, axes_metrics_simple_1 = plt.subplots(ncols=2, figsize 
-> =(12, 4)) 

axes_metrics_simple_1[0].plot(epochs_1, acc_1_train, ’.-’, label="Training␣ 
-> data") 
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axes_metrics_simple_1[0].plot(epochs_1, acc_1_val, ’.-’, label="Validation␣ 
-> data") 

axes_metrics_simple_1[0].set_xticks(epochs_1) 
axes_metrics_simple_1[0].set_xlabel("Number␣of␣epochs") 
axes_metrics_simple_1[0].set_ylabel("Accuracy␣(%)") 
axes_metrics_simple_1[0].legend() 

axes_metrics_simple_1[1].plot(epochs_1, loss_1_train, ’.-’, label="Training␣ 
-> data") 

axes_metrics_simple_1[1].plot(epochs_1, loss_1_val, ’.-’, label="Validation␣ 
-> data") 

axes_metrics_simple_1[1].set_xticks(epochs_1) 
axes_metrics_simple_1[1].set_xlabel("Number␣of␣epochs") 
axes_metrics_simple_1[1].set_ylabel("Cross␣entropy␣loss") 
axes_metrics_simple_1[1].legend() 
plt.show() 

y_pred_vals_model_1 = model_1.predict(X_test, batch_size=512, verbose=1) 
y_pred_dense_model_1 = (y_pred_vals_model_1 > 0.5).astype(int) 
print(len(y_pred_vals_model_1)) 
acc_dense_model_1 = accuracy_score(y_test, y_pred_dense_model_1) * 100 
print(f"Overall␣accuracy:␣{acc_dense_model_1:.2f}%") 
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Processing ROOT Files in Python

import uproot as up 
import awkward as aw 
import numpy as np 
import pandas as pd 
import sys 
import os 
import matplotlib.pyplot as plt 

file=up.open("ambeRun628793.root") 
file.keys() 
file_2=up.open(’co57Run629846.root") 
file2.keys() 

data_nr=file["t"] 
file.classnames() 
data_er=file2["t"] 
file2.classnames() 

branches_nr=data_nr.arrays() 
branches_er=data_er.arrays() 

weakn=branches_nr[(branches_nr.a>=5000)] 
midn=branches_nr[(branches_nr.a>=15000)] 
fulln=branches_nr[(branches_nr.a>=30000)] 

weakn_nr=weakn[weakn.a<=15000] 
midn_nr=midn[midn.a<=30000] 
full_nr=fulln[fulln.a<=50000] 

branches_er=data_er.arrays() 

weake=branches_er[(branches_er.a>=5000)] 
mide=branches_er[(branches_er.a>=15000)] 
fulle=branches_er[(branches_er.a>=30000)] 

weake_er=weake[weake.a<=15000] 
mide_er=mide[mide.a<=30000] 
fulle_er=fulle[fulle.a<=50000] 

full_nr2=full_nr[’s’] 
fulle_er2=fulle_er[’s’] 
fulle_er2=pd.DataFrame(fulle_er2) 



full_nr2=pd.DataFrame(full_nr2) 

midb_nr2=midn_nr[’s’] 
mide_er2=mide_er[’s’] 
mide_er2=pd.DataFrame(mide_er2) 
midb_nr2=pd.DataFrame(midb_nr2) 

weakb_nr2=weakn_nr[’s’] 
weake_er2=weake_er[’s’] 
weake_er2=pd.DataFrame(weake_er2) 
weakb_nr2=pd.DataFrame(weakb_nr2) 

fulle_er3=fulle_er2.sample(n=20000) 
full_nr3=full_nr2.sample(n=20000) 

mide_er3=mide_er2.sample(n=20000) 
midb_nr3=midb_nr2.sample(n=20000) 

weake_er3=weake_er2.sample(n=10000) 
weakb_nr3=weakb_nr2.sample(n=10000) 

savetxt(’NR_high_energy.csv’,full_nr3,delimiter=’,’) 
savetxt(’ER_high_energy.csv’,fulle_er3,delimiter=’,’) 

savetxt(’NR_mid_energy.csv’,␣midb_nr3,delimiter=’,’) 
savetxt(’ER_mid_energy.csv’,␣mide_er3,delimiter=’,’) 

savetxt(’NR_low_energy.csv’,weakb_nr3,delimiter=’,’) 
savetxt(’ER_low_energy.csv’,weake_er3,delimiter=’,’) 

43
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Waveform Simulation

import numpy as np 
import pandas as pd 
from scipy.stats import norm 
from scipy.stats import rv_discrete 
from numpy import trapz 

ER_data_pack = pd.read_csv(’ER_high_energy.csv’, header=None) 
NR_data_pack = pd.read_csv(’NR_high_energy.csv’, header=None) 

ER_data_pack = ER_data_pack.to_numpy() 
NR_data_pack = NR_data_pack.to_numpy() 

ER_sum = np.sum(ER_data_pack, axis=0) 
NR_sum = np.sum(NR_data_pack, axis=0) 

ER_area = trapz(ER_sum, dx=1) 
NR_area = trapz(NR_sum, dx=1) 

ER_prob = ER_sum/ER_area 
NR_prob = NR_sum/NR_area 

x = np.arange(0, 100, 1) 
y = norm.pdf(x,50,3)*4 

ER_numbers = np.arange(len(ER_prob)) 
NR_numbers =np.arange(len(NR_prob)) 

ER_rv = rv_discrete(values=(ER_numbers,ER_prob)) 
NR_rv = rv_discrete(values=(NR_numbers,NR_prob)) 

peak = y 

def peak_gen(): 
baseline = np.zeros(1876) 
for i in range(0,19): 

tes5 = ER_rv.rvs(size=20) 
noise = np.random.normal(0, .01, 1876) 
if tes5[i] > 1876 - 50: 

continue 
a = np.zeros(tes5[i]-50) 
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c = np.append(a,peak) 
b = np.zeros(1776-tes5[i]+50) 
d = np.append(c,b) 
baseline += d 
baseline += noise 

return baseline 

def peak_gen_nr(): 
baseline = np.zeros(1876) 
for i in range(0,19): 

tes6 = NR_rv.rvs(size=20) 
noise = np.random.normal(0, .01, 1876) 
if tes6[i] > 1876 - 50: 

continue 
a = np.zeros(tes6[i]-50) 
c = np.append(a,peak) 
b = np.zeros(1776-tes6[i]+50) 
d = np.append(c,b) 
baseline += d 
baseline += noise 

return baseline 

ER_peak_array = [] 
for _ in range(20000): 

peak_locs=peak_gen() 
ER_peak_array.append(peak_locs) 

NR_peak_array = [] 
for _ in range(20000): 

peak_locs_nr=peak_gen_nr() 
NR_peak_array.append(peak_locs_nr) 

NR_samples = np.stack(NR_peak_array) 
NR_samples.shape 

ER_samples = np.stack(ER_peak_array) 
ER_samples.shape 

plt.plot(ER_samples[0]) 
plt.show() 

DF_ER = pd.DataFrame(ER_samples) 
DF.to_csv("ER_20PE_sim.csv") 

DF_NR = pd.DataFrame(NR_samples) 
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DF2.to_csv("NR_20PE_sim.csv") 
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B Package Details

UpRoot – Main utility for opening and converting ROOT fles into arrays. Unlike
PyRoot, UpRoot has no C++ dependencies. UpRoot uses Numpy to cast ROOT structures
to Numpy arrays, and can handle large fles relatively quickly. Recommended for those
wishing to avoid full treatment of data in ROOT.

Awkward – Utility for handling jagged arrays and heterogeneous data structures from
ROOT fles. Highly recommended to pair with UpRoot operations. Can be converted to
Numpy or Pandas arrays on the fy.

Numpy – Although ubiquitous in Python coding, the use of Numpy in our case relies on
its neat data structures and pre-built matrix operations. For example, on page 38, ‘np.square’
trivializes an element by element, row by row multiplication, which would otherwise involve
looping or linear operations.

Pandas – Another widely used data structure module. Many pre-built functions ease the
process of data handling and analysis in Python, such as importing csv fles with index and
heading control. DataFrames are similar to Numpy arrays, but with a column-frst syntax.

Sklearn – Workhorse of machine learning processing and performance metrics. Many
useful tools built around ML operations, such as training/testing data splits, normalization
methods, and accuracy interpretation.

TensorFlow – All inclusive machine learning ops. Paired with the Keras layer API,
sequentially building models is made somewhat trivial. Simple architectures will have output
dimensions automatically aligned with forward layers. All parameters are adjustable, and
the backend is transparent for any call. Performance metrics are easily obtained if paired
with Sklearn functions.

Scipy - A scientifc computing platform with many useful tools. Here, we make use of
the statistics package to control our random variable and generate our Gaussian peak.

sys - Specifcally getsizeof, as large fles can bottleneck memory limitations unexpectedly.
Calling this function around will help track any potential memory issues. It’s nice to know
the exact allocation for a given variable too.
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