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ABSTRACT 

 

Effectiveness of Pathogen-Specific Passive Antibodies to Mitigate Infectious Diseases in 

Apis Mellifera 

 

Tanner Nordseth 

 

Director: Benjamin Hause, Ph.D. 

 

 

 

Honeybees (Apis mellifera) are widely recognized as a vital part of the global 

ecosystem and the world's food supply due to their pivotal role in the pollination of both 

natural and agricultural flora.  Colony Collapse Disorder (CCD) is an emerging 

phenomenon characterized by a colony's worker bees deserting the hive and leaving the 

queen behind.  This usually results in colony failure.  CCD is a multifactorial issue, with 

many environmental stressors and pathogens playing a role.  Deformed Wing Virus 

(DWV) has been identified as a leading cause in this phenomenon.  Paenibacillus larvae 

(P. larvae) is another lethal pathogen that is responsible for American Foulbrood Disease 

and can also ultimately lead to colony collapse.  Honeybees have ineffective innate 

immunity against these pathogens and lack an adaptive immune system altogether. 

In the research being presented, novel passive antibody therapy was used to treat 

DWV and P. larvae.  To develop this therapeutic, white leghorn hens, which are known 

to confer passive immunity to the yolks of their eggs in the form of Immunoglobulin Y 

(IgY), were vaccinated against one of these antigens.  The egg yolks were harvested, 

diluted, and purified to produce concentrated IgY specific to either DWV or P. larvae.  

This purified IgY was added to the larval diet and orally administered to 1st instar larvae 



 
 

in a challenge study to test its ability to protect against either DWV or P. larvae 

challenge.  Experimental results revealed that among larvae challenged with DWV, 

mortality dropped from 79% to just 29% when a 1:100 dilution of DWV-specific IgY 

was administered.  Likewise, larvae challenged with P. larvae saw mortality drop from 

100% to only 17% when treated with a 1:100 dilution of P. larvae-specific IgY.  The 

mortality trends in both models were supported by corresponding molecular data in the 

form of either RT-PCR or CFU/mL data.  These results suggest that pathogen-specific 

IgY may provide honeybee larvae with approximately 50% protection against lethal 

DWV disease and 80% protection against lethal P. larvae disease – figures that would 

significantly reduce CCD.  This technology could have a profound impact on the future 

of beekeeping – an industry that is key to avoiding a global food sustainability crisis. 

 

KEYWORDS: Deformed Wing Virus (DWV), Colony Collapse Disorder (CCD), 

Immunoglobulin Y (IgY), honeybees, Apis mellifera, Paenibacillus larvae (P. larvae) 
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CHAPTER ONE 

Introduction 

 

Agricultural and Economic Significance of Apis Mellifera 

 Originating in East Asia, the western honeybee (Apis mellifera) is widely 

renowned as perhaps the single most important organism for maintaining agricultural 

sustainability and biodiversity among flowering plants.1,2  Bees are responsible for the 

pollination of more than 400 commercially grown agricultural plants and approximately 

1/6 of the world’s natural flowering plants.3  Unlike other pollinators, A. mellifera is 

considered a “generalist forager” because it visits such a wide array of plants.4  Honeybee 

colonies are rented around the globe for the production of hive products (i.e. honey) and 

pollination services (90% of commercial pollination occurs via A. mellifera), making this 

one of the most economically important insects.2,5  Crops such as almonds are entirely 

dependent on A. mellifera for pollination; blueberries and cherries are approximately 90% 

dependent; and nearly every other fruit, nut, vegetable, melon, and field crop produced in 

the United States is at least partially dependent upon the honeybee.6,7  Today, there are 

approximately 2.7 million A. mellifera colonies in the United States, with over 1.8 

million in California alone to support the state’s almond industry.7  In recent decades, 

honeybees are also steadily increasing their value contributed to the agricultural 

economy, with their pollination services and honey products contributing an estimated 

$9.3 billion in 1987, $14.6 billion in 2000, and $20 billion in 2020 to U.S. crop 

production.6,7 
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Colony Collapse Disorder 

 In recent years, A. mellifera has become increasingly afflicted by Colony Collapse 

Disorder (CCD), a multifactorial phenomenon that induces the swift demise of an entire 

colony.  CCD is best characterized by the rapid disappearance of a colony’s adult worker 

bees, leaving behind a seemingly healthy colony containing food, brood, and a queen.8  

As the honeybee population continues to dwindle, it has been surmised that malnutrition 

from a decrease in flower diversity and the increase in pesticide usage, especially 

neonicotinoids, are two likely contributors.9,10  There is also evidence suggesting that the 

rise in global CO2 levels may be causing fundamental alterations in the physiology of 

pollen-producing plants that diminish the pollen’s protein content and create nutritional 

deficits for A. mellifera.11  There is ongoing debate regarding which of these factors are 

most problematic and what steps should be taken to protect A. mellifera.  While each of 

these factors likely creates strain on the honeybee population, a pathogen known as 

Deformed Wing Virus (DWV) is widely considered to be the predominant stressor 

contributing to CCD. 

 

Overview of Deformed Wing Virus 

  DWV is a critical honeybee pathogen that has captured the attention of 

apiculturists in recent years.  The discovery of DWV began with the isolation of Egypt 

Bee Virus, a virus now known to be related to DWV that was isolated from asymptomatic 

adult worker bees in Egypt in 1977.12  This discovery inspired further study of honeybee 

virology, and in 1982 a virus distantly related to Egypt Bee Virus was isolated in Japan.12  

This virus was temporarily termed the Japanese Isolate of Egypt Bee Virus, but was 
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quickly renamed for the characteristic symptoms it caused and given its present-day 

name: Deformed Wing Virus.12 

DWV is the most widespread of all honeybee viruses, affecting 50-75% of 

colonies across the world.10  This virus can act as a devastating long-term stressor to a 

hive at both the individual and colony levels, causing both CCD and increased winter 

mortality losses.10,13  At the individual level, the classical symptoms of DWV infection in 

adults include, but are not limited to: shrunken and crippled wings; disfigured or 

discolored abdomens; protruded proboscis; and incomplete development of the 

hypopharyngeal glands and mandibular glands.14  In larvae, pupae, and emerging pupae, 

infected individuals exhibit significantly higher mortality rates before capping, during 

pupation, and during emergence from capped brood cells; slower emergence from capped 

brood cells; and lower body weights.14,15  Infections are not always overt; covert 

infections are the most common and occur when the viral load threshold to display visible 

morphological symptoms is not reached.10  Covert infections have long manifested 

themselves in hives without causing extensive damage to colonies; severe overt 

infections are a mostly modern development.  For an infection to be considered covert, it 

must meet three criteria: presence of viral material without symptoms of disease, spread 

via vertical transmission, and the occurrence of sporadic overt outbreaks.12  Covert 

infections are also detrimental, leading to issues such as cognitive impairments, 

accelerated life cycle behaviors, increased rate of cellular apoptosis, and reduced life 

expectancy.10,14  There are also disputed claims that covert DWV infection may lead to 

shortened flight duration and distance during foraging.10  Individuals with visible overt 
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infections have a significantly higher viral load than their unaffected counterparts, 

containing a factor of approximately 1.7 x 106  more virus particles.14 

At a colony level, individuals with both overt and covert DWV infections 

contribute to elevated hive mortality rates and ultimately CCD.  Individuals with 

morphological symptoms of the wings, abdomen, and proboscis may have compromised 

flight, digestive, and feeding abilities – all of which contribute to early mortality.  The 

implications of covert infections can also be highly deleterious.10  These individuals often 

demonstrate behaviors earlier in their life cycle than what is natural, especially 

precocious foraging, or premature foraging, which is the natural response of bees under 

stressful conditions and is considered a risky behavior.10  As these individuals live an 

abbreviated life, their total activity and contribution to the hive is also reduced.10  

Precocious foraging is also disruptive inside the hive, as bees demonstrating accelerated 

behavioral maturation spend less time in the nursing phase before beginning to forage, 

leaving a suboptimal number of individuals left tending to the brood and thus further 

accelerating colony collapse.10  Both covert and overt infections can lead to neurological 

maladies including sensory defects, upregulation of the immune system, and memory 

deficits.10 

 

Structure and Classification of Deformed Wing Virus 

 DWV belongs to the genus Iflavirus within the family Iflaviridae.12  The virus 

consists of a single-stranded, positive-sense RNA genome (+ssRNA) that produces a 

non-enveloped virion 30 nm in diameter with icosahedral geometry and three major 

structural viral proteins: VP1, VP2, and VP3.12,14,16  In general, all strains of DWV have 
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the following basic genome organization: a long 5’ untranslated region (5’ UTR) 

containing an Internal Ribosome Entry Site (IRES), a single open reading frame (ORF) in 

the middle, and a short 3’ UTR that is highly conserved and terminates with a 3’ poly-A 

tail.12,17  It is believed that the IRES makes it possible for the virus to avoid and/or disrupt 

the host organism’s cap-dependent mRNA translation system.17 

 Currently, there are two main strains of DWV described: Type A and Type B, 

which are believed to have diverged from each other around the year 1835.2,18  There is 

also emerging evidence of a Type C variant that diverged around the year 1697.18  These 

strains differ slightly in geographic distribution and Type B has been found to be more 

virulent.2,10  Despite these slight regional variations, the DWV genome sequence is highly 

conserved and largely consistent throughout the world and among all strains.4  DWV is 

closely related to Kakugo Virus (KV) and Varroa Destructor Virus 1 (VaDV-1), two 

other iflaviruses that affect honeybees.4  Due to the 97% sequence homology between 

DWV and KV, there is ongoing research to determine whether these viruses are separate 

species or simply regional isolates of the same species.4 

 

DWV Transmission and Infection 

 The primary mechanism of DWV transmission is via the parasitic Varroa 

destructor mite, a natural host of the virus.13,14  This mite serves as both a biological 

vector that supports the replication of DWV before transmission and a mechanical vector 

that circumvents the A. mellifera physical defense barriers by injecting the virus directly 

through the exoskeleton and basal lamina of the epithelia and directly into the 

hemolymph.1,19  While Varroa mites serve as the most common and infectious vehicle of 
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DWV transmission, once the virus is present in a colony it can also be spread by infected 

A. mellifera via horizontal transmission (intra-generational) and vertical transmission 

(inter-generational).12  Vertical transmission of DWV occurs when infected parents 

produce infected offspring due to the presence of DWV in the sperm and/or egg gametes.  

Horizontal transmission of DWV occurs when the virus is spread between individuals 

from fecal matter, cannibalization, or orally via trophallaxis.12,19  Active infection is best 

identified by detecting viral proteins and nucleic acid species produced during DWV 

replication via RT-PCR.12,20 

The mechanism of entry into host cells for iflaviruses is believed to resemble that 

of the related family of picornaviruses, which utilize receptor-mediated endocytosis.16  

To enter endosomes, virions must be exposed to a solution of sufficient pH or ion 

concentration that initiates the detachment of the P domain at the C-terminal of VP3.16  

DWV’s P domain contains a catalytic triad of the residues Asp294, His277, and Ser278.16  

These residues are structurally flexible, and it is hypothesized that when in the optimal 

conformation, this triad catalyzes hydrolytic reactions that allow the P domain to bind to 

virus receptors or disrupt the membrane in a fashion that makes it possible for the virus to 

inject its +ssRNA genome into the host cell’s cytoplasm and infect the cell.16 

Once an A. mellifera host is infected, DWV infection has a high degree of tissue 

specificity.19  DWV RNA can be found in the brain, midgut epithelium, gut contents, and 

reproductive organs.4,19  Viral loads are highest in the reproductive organs; the testis and 

seminal vesicles of drones and the ovaries of queens.19  High viral loads in drones’ 

reproductive organs can hinder their reproductive fitness and cause them to transmit 

DWV RNA through their sperm, thus contaminating the queen and contributing to the 
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vertical transmission of DWV to the next generation of workers.19  DWV can also be 

found in multiple regions of the brain of infected A. mellifera, especially the corpora 

pedunculata neuropils, or mushroom bodies, where DWV actively replicates.4,10  These 

structures serve as important higher brain centers that are largely responsible for olfaction 

and other sensory processes.4  DWV infection of the mushroom bodies likely contributes 

to issues with olfaction, vision, and possibly even behaviors that promote the horizontal 

transmission of the virus to nearby colonies.4,10  DWV has also been associated with 

memory loss, learning defects, and poor orientation abilities, making infected individuals 

more susceptible to predators.10 

A. mellifera has limited innate immunity against DWV and largely ineffective 

defense mechanisms against Varroa destructor and the spread of the virus.  Unlike Apis 

cerana, the eastern honeybee and original host of Varroa, A. mellifera cannot combat 

varroosis by temporarily suspending worker reproduction or entombing infested drone 

brood, processes which have shown to reduce the number of viable hosts for Varroa and 

reduce mite prevalence by up to 25% in A. cerana.21,22  Instead, the A. mellifera mite 

defense strategy relies on grooming and hygienic activity.21,23  Grooming is a behavior 

where bees inspect and clean their bodies to remove any foreign material, including 

mites.  Bees may perform this task on themselves (auto-grooming) or on other individuals 

in the colony (allo-grooming).24  Hygienic behavior describes the removal of dead, 

defective, diseased, or infested brood prior to emergence as adults.13  Colonies that 

demonstrate high performance in grooming and hygienic behaviors represent the most 

attractive candidates for the selective breeding of mite-resistant honeybees.13  There is 

also evidence that A. mellifera selectively bred for the trait “Suppression of Mite 
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Reproduction” (SMR; a variety of behaviors and detection mechanisms that result in 

heightened sensitivity to cues associated with mite-infested pupae) remove an even 

greater amount of mites than those bred for only hygienic activity.25  SMR bees may also 

induce physiological changes in Varroa that reduces the mites’ fertility and offspring 

viability.25  This ability comes with a steep tradeoff, however, as this same factor is also 

believed to hinder pupal development and reduce overall brood viability.25  Despite these 

attempted defensive measures, this host-parasite relationship is unbalanced and A. 

mellifera is still largely unequipped to effectively combat the invasive Varroa mite and 

ensuing DWV infection.13 

 

Varroa Destructor Mites 

 Varroa destructor is a hematophagous ectoparasitic mite that poses a serious 

threat to modern apiculture.13  This invasive species was spread to A. mellifera in Europe 

from its original host of A. cerana in Asia as domesticated honeybees were transported 

throughout the world during the 20th century, particularly the 1970’s and 1980’s.12,13  

Today, the only remaining Apis colonies free from Varroa exist in Australia and a few 

remote, isolated islands.26  Apis mellifera is the only Apis species that does not naturally 

host a parasitic mite in its brood, making it especially susceptible to invasive mite species 

such as Varroa.26  Varroa is best known for its association with the transmission of DWV 

to honeybee colonies via feeding behavior, the most destructive consequence of 

varroosis.   

While DWV is occasionally found in colonies free of Varroa, the virus is detected 

in just 6-13% of colonies without the mites and in 75-100% of colonies infested by the 
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mites.1,2  Viral load is also greatly amplified by the presence of these pests; there is a one-

million-fold difference in viral load between colonies with Varroa compared to those 

without Varroa.1,2  The seasonal levels and distribution of DWV also closely match the 

seasonal prevalence of Varroa, with levels climbing during the late summer.12  While 

varroosis increases the viral load of DWV in a colony, it decreases the variant diversity.2  

It is believed that Varroa selects for the DWV strains with competitive advantages that 

cause them to be the most virulent and persistent in the local A. mellifera population.2  It 

should also be noted that for a mite to cause an overt infection, it must be both a 

mechanical and biological vector of DWV that produces a high enough viral titer to reach 

the threshold of disease via transmission.27  Mites that are capable of causing wing 

deformities contain 102 to 104 more DWV particles than mites that are not.14 

When left untreated, most colonies will collapse from varroosis in 2-3 years.13  

Much like the associated DWV infection, Varroa infestation damages A. mellifera at both 

the individual and colony levels.  Varroa is capable of injecting viral material and 

salivary proteins that activate latent infections present from vertical transmission directly 

into the hemolymph of its host.28  It also consumes a significant amount of the host’s 

hemolymph throughout all life stages.13  This loss of hemolymph in adult honeybees 

weakens them and causes immunosuppression, but it is especially detrimental when it 

occurs during the larval and pupal stages.13  When parasitized by Varroa during the 

developmental stages, worker and drone brood that survive the pupal phase will emerge 

with a reduced body weight and likely display symptoms of overt DWV infection.15  The 

presence of just one adult female mite in a brood cell and her progeny that begin feeding 

during the pupal phase can reduce emergence weight of adult drones by 10%.15  At the 
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colony level, Varroa inhibits colony reproduction by reducing the reproductive fitness of 

drones.28  As less reproduction occurs and more workers die from DWV infections, the 

colony’s overall foraging activity decreases, leading to a depleted nectar and pollen 

supply.10  Additionally, colonies affected by varroosis exhibit less swarming.29  

Sometimes referred to as colony fission, swarming is the mechanism through which an 

entire colony reproduces by splitting one colony into two.29 

The Varroa life cycle is divided into two major phases: phoretic and 

reproductive.13  During the phoretic phase (sometimes referred to as the dispersal phase) 

mites attach to mature A. mellifera and travel with them as they forage, offering them a 

means of transportation to spread beyond the colony.13  Varroa much prefers the dark, 

humid climate inside the hive – especially within sealed brood – so the dispersal that 

occurs during the phoretic phase marks the only time Varroa leaves the colony during its 

life cycle.13  During the reproductive phase, Varroa focuses its efforts on a colony’s 

brood.13  This phase begins when mites enter worker and drone brood cells just prior to 

capping (t = 7-8 days after A. mellifera eggs are laid).13  Mites preferentially choose cells 

that are shallower, wider, older (contain more residual semiochemical attractants from 

larval food and cocoons), and contain the largest larvae (preferably 5th instar).30,31  Next, 

they crawl to the bottom of the cell where they “hide” beneath the larvae in the larval 

feed to avoid detection by hygienic bees until capping occurs.13  After capping, mites 

feed on pupal hemolymph while undergoing oogenesis and vitellogenesis.13  Mite eggs 

are laid about 70 hours after capping occurs and will develop into adult Varroa in 

approximately six days.13  Finally, both parent and progeny emerge from the brood cell 

with the adult bee when pupation is completed (for workers, t = 20-21 days after A. 
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mellifera eggs are laid; for drones, t = 24 days).13  Some may remain attached to the 

emergent bee while others will scatter throughout the colony.  Of those that scatter, 

Varroa females can detect age and function of bees in the colony, and they methodically 

seek out middle-aged nurse bees to transport them to brood cells around the hive.13 

During reproduction, Varroa are believed to prefer drone brood over worker 

brood due to drones’ longer pupation period.13  With the additional 3-4 days to feed and 

reproduce while pupae are capped, mites in drone cells will produce approximately 1.6 

times more mature female offspring than their counterparts in worker cells.13  Varroa’s 

tendency to thrive in brood cells with longer pupation periods may also contribute to A. 

mellifera’s elevated susceptibility to Varroa compared to A. cerana, a species with 

slightly shorter larval and pupal periods.  Given this preference, it is estimated that drone 

brood have an 8-10-fold higher rate of infestation than worker brood.30  This may also be 

due in part to the more intensive and frequent tending that drone brood receives, allowing 

more opportunities for mites on nurse bees to reach 5th instar drone larvae.30  Varroa 

females are able to identify their preferred targets due to their attraction to methyl and 

ethyl esters of straight-chain fatty acids, brood pheromones present in the larval cuticle 

that stimulate capping of the brood cell.32  These esters are inherently higher in drones 

and 5th instar larvae.32  Mites are highly sensitive to changes in these pheromones; the 

variation in ester hydrocarbon structure between 4th and 5th instar larvae elicits a strong 

preference for 5th instar larvae.31  Unlike worker and drone brood, queen brood show an 

exceptionally low rate of Varroa infestation.33  This is likely explained by both the 

shorter pupation period of queen brood and the presence of octanoic acid in queen larvae 

and queen extracts, a compound known to be repellent to female Varroa.13,33 
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American Foulbrood and Paenibacillus Larvae 

Paenibacillus larvae (P. larvae), formerly known as Bacillus larvae, is a Gram-

positive and spore-forming bacterium that causes the disease American foulbrood (AFB) 

in A. mellifera.34,35  The bacterium has a rod (bacillus) shape, rounded ends, a length of 

2.5 – 5.0μm, a width of approximately 0.5μm, and often grows in elongated chains.36  

This facultative anaerobe produces highly infectious spores and it can be found in most 

parts of the world and in all castes within infected honeybee colonies.34,37  Previously, P. 

larvae was separated into two subspecies, Paenibacillus larvae larvae and Paenibacillus 

larvae pulvifaciens.38  However, a 2006 taxonomic review supported the merger of the 

two subspecies into one species based on biochemical profiles and spore morphologies.38  

There are currently four strains of P. larvae that have been identified to cause AFB, 

labelled ERIC I-IV based on their enterobacterial repetitive intergenic consensus (ERIC) 

sequences.39  ERIC I is found worldwide, while ERIC II is found only in Europe and is 

considered the most virulent strain, as it is capable of killing all larvae in a hive within 

seven days of infection.39  P. larvae produces the toxin C3larvin, which possibly 

contributes to AFB pathology.39 

AFB affects a colony’s brood and is characterized by disproportionately high 

mortality among larvae and pupae, while adults are not susceptible to the disease.5  A 

larva must only consume a few spores within the first 36 hours of life post-hatching for 

infection to begin.39  Given the severe pathology of the brood, AFB is currently the most 

damaging and economically relevant bacterial disease facing honeybees as it is ultimately 

lethal to the entire colony if left untreated.5,34  Much like DWV, AFB can be transmitted 
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both horizontally, as bees travel throughout their colony, and vertically.  Vertical 

transmission can occur at either the individual level when an infected queen or drone 

passes the virus to offspring during reproduction, or at the colony level when an infected 

colony swarms to “reproduce” or create a new colony.  This disease is listed in the 

Terrestrial Animal Health Code through the World Organization for Animal Health, 

setting many strict recommendations on foreign honeybee importation to prevent further 

spread of this disease.34,40 

P. larvae and AFB clinical infections can be easily identified in a hive by 

assessing the distribution and appearance of larvae in areas containing brood.  Hives 

suffering from AFB will display empty or discolored spots within brood regions due to 

brood cells that are empty or contain dead or dying larvae.35  Diseased hives also produce 

significantly less honey than their healthy counterparts.41  Clinical symptoms of infected 

brood include discoloration, a characteristic foul odor, and brown remains with a 

gelatinlike consistency.35,38  Freshly deceased, these remains are stringy and form rope-

like strands when prodded.38  During decay, these remains will shrivel into solid scales 

containing millions of active P. larvae spores that cling to the bottom and sides of brood 

cells.38  Each infected larva may produce anywhere from 1 billion to 2.5 billion 

spores.36,40  These scales are so firmly adhered to the brood cells that they are largely 

resistant to hygienic honeybee behavior, leaving them in place to release spores and 

ultimately infect the next larva that occupies the cell.  Spores can remain active inside a 

hive for at least 35 years.42  Subclinical infections must be diagnosed in a laboratory 

setting, where the presence of P. larvae is confirmed via microscopy and/or culture.35,40 
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Treatment of AFB is difficult given P. larvae spores’ extreme heat and chemical 

resistances.40  The pathogen has also developed resistance to many commonly 

administered antibiotics such as oxytetracycline (the most common AFB antibiotic of the 

last 50 years; commercially known as Terramycin and produced by Pfizer), which is the 

only antibiotic currently approved by the United States Food and Drug Administration for 

AFB treatment.5,43  Oxytetracycline aims to thwart P. larvae spore germination until 

brood have passed the age of highest vulnerability while also buying the colony time to 

remove already dead or diseased brood.43  While some antibiotics can effectively 

neutralize vegetative P. larvae, they still fail to treat spores and ultimately fail to prevent 

the recurrence of AFB.35  To prevent the spread of the pathogen, it is therefore common 

practice to destroy diseased colonies, usually by burning them and the equipment 

associated with them.5,35  Artificial swarming is also an option, a practice that involves 

prompting adult bees to relocate to a new hive and leave behind the diseased brood, 

which can then be destroyed.44  Finally, colonies that are selectively bred for increased 

hygienic behavior in nurse bees have displayed a significant reduction in AFB prevalence 

and a much higher recovery rate.41  Spores, the agents of AFB infection, begin appearing 

in diseased brood cells 10-11 days after eggs hatch when 5th instar larvae are developing 

into prepupae.41  Sporulation occurs when the prepupae succumbs to the infection, so it is 

critical to the survival of the hive for hygienic bees to remove diseased larvae as quickly 

as possible.45  Remarkably, data shows that P. larvae strains that are more virulent to 

individual larvae are less virulent to the overall colony, as the diseased larvae die faster 

and hygienic bees can remove them faster, leaving less time for bacterial propagation.46 
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Immunoglobulin Y 

Immunoglobulin Y (IgY) is a newly utilized antibody with broad therapeutic 

capabilities to combat many pathogens.47  This antibody was first described in 1983 and 

began to be applied for practical applications in the 1990’s.48  IgY can be found in the 

egg yolks of reptiles, amphibians, and most notably birds – specifically chickens.48  This 

avian antibody is a result of passive immunity, as IgY is transferred from the maternal 

blood serum to egg yolks to protect developing embryos from the vertical transmission of 

pathogens throughout embryogenesis.48,49  Maternal IgY also functions to provide 

protection to offspring early in life while the immune system matures and generates 

immune effectors. 

IgY has a great deal of industrial appeal, as chickens can efficiently produce 

highly specific antibodies against a multitude of pathogens beyond just avian species.50  

Hens may be vaccinated with an antigen to produce IgY against the antigen of interest or 

with gene expression vectors to produce IgY with specificity for the given gene.48  

Evidence suggests that hens produce maximal IgY specific to the antigen or gene of 

interest when they are immunized intramuscularly in the pectoral muscle tissue as 

compared to receiving the immunization subcutaneously.51,52  At peak immunity, 2-10% 

of hens’ total IgY production will be specific to the antigen or gene of interest from the 

immunization.53 

Some of the main advantages of IgY include its relative ease of mass production, 

the non-invasive manner in which it is collected, and its enhanced response to 

mammalian antigens.50  Mature eggs contain 100-200 mg of IgY when they are laid, and 

one laying hen produces an average of 40 g of IgY per year.48,50  There have been several 
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strategies developed to efficiently extract IgY suitable for biomedical use.  Mammalian 

IgG and other types of passive antibodies have historically been utilized for such 

biomedical purposes, which required bleeding of hyperimmunized animals to harvest 

antibodies.48  Using the IgY of chicken egg yolks represents a far more ethical, more 

cost-effective, and less invasive means of antibody extraction than the traditional 

practices of IgG collection.48  There is also evidence that chickens can produce higher 

titer antibodies against mammalian antigens than other species vaccinated against these 

same antigens.50  This is due to the increased phylogenetic distance between chickens and 

mammals, as immune response increases as the evolutionary gap increases between 

antigen host species and immunized species.50,54 

IgY has the classic “Y” antibody shape and consists of the standard two identical 

heavy chains and two identical light chains that are connected by disulfide bonds.55  

These chains consist of constant domains and variable domains that make up antigen-

binding fragments (FABs) that bind specific antigen sequences.  Light chains are 

comprised of one variable domain and one constant domain.  Heavy chains consist of one 

variable domain and four constant domains (CH1, CH2, CH3, CH4).54  Perhaps the most 

prominent and unique structural feature of IgY is its lack of a hinge region, making it 

more rigid than mammalian immunoglobulins, including IgG.54  This lack of flexibility is 

caused by glycine and proline residues between the CH1, CH2, and CH3 constant 

domains.55  It is believed this extra rigidity contributes to the functionality of IgY.  This 

includes IgY’s inability to agglutinate polyvalent antigens in normal conditions, likely as 

a result of the inability to achieve the required conformation of the FABs due to steric 

hindrance.55  IgY has a molecular weight of approximately 180 kDa.55  
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CHAPTER TWO 

Materials & Methods 

 

Vaccination of Chickens and Yolk Collection  

Six white leghorn chickens, approximately 6 months of age, were immunized four 

times with 10 µg each of purified DWV VP1, VP2, and VP3 proteins in phosphate 

buffered saline along with incomplete Freund’s adjuvant at 67% (v/v).  The DWV 

proteins were expressed as hexahistidine-tagged fusion proteins in baculovirus and 

purified using affinity chromatography by Genscript.  An additional six birds of the same 

age were also immunized four times against P. larvae.  These vaccinations consisted of 

spores cultured from P. larvae obtained from the American Type Collection Collection 

and grown on 5% sheep blood agar for seven days.  Spores were recovered by scraping 

the plate overlaid with 5 mL of PBS.  Spores were inactivated with formalin. 

The birds were vaccinated with a 0.5 cc intramuscular injection in each breast.  

Immunizations were given periodically at 21-day intervals to sustain the immune 

response and trigger the immunized hens to continue passively generating pathogen-

specific antibodies in their eggs.  Eggs were collected daily, beginning two weeks after 

the third vaccination.  Yolks were separated from the albumen using a wire egg 

separating apparatus.  The yolks were pooled and refrigerated until further processing. 
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Figure 2-1.  Separated egg yolks from hens vaccinated against DWV and P. larvae. 

 

 

 

 

 

Figure 2-2.  Visualization of IgY experimental concept.56  Retrieved from 

https://tallgrassbiologics.com/services/ 

 

 

https://tallgrassbiologics.com/services/
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Purification of Antigen-Specific IgY via Freeze-Thaw 

Yolks were processed according to Stage I of the protocol described by Petr 

Hodek.50  Yolks were diluted with seven volumes of tap water and brought to a pH of 5.0 

using 1.0 N HCl.  This was done in 1-gallon containers, with each container consisting of 

500 mL yolk, 3 L water, and 36 mL 1.0 N HCl.  A pH probe was used to verify the pH of 

each aliquot after mixing.  This solution was frozen overnight at -18°C and thawed the 

following day at room temperature. 

Upon thawing, the solution separated into two distinct layers: an upper aqueous 

layer containing the IgY (mostly transparent) and a lower viscous layer, containing lipids 

and other waste (orange).  The upper aqueous layer was removed with a pipette 

connected to a transfer pump with the bottom lipid layer being discarded.  The aqueous 

layer was labelled and referred to as “freeze-thaw” or “Diluted and Clarified Egg Yolks”.  

The Diluted and Clarified Egg Yolks were then poured through cheese cloth and a mesh 

wire filter to remove any remaining large lipid particles. 

 

Figure 2-3.  Diluted and Clarified Egg Yolks after lipid layer is discarded.  Note the off-yellow, cloudy 

color. 
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Next, the Diluted and Clarified Egg Yolks were concentrated with the MiniKros 

Hollow Fiber Filter Module (P/N: N04-E030-05-N; Media/Rating: mPES / 30 k; Surface 

Area: 5400 cm^2; Max.Op.Pressure 30 psig (2 bar); SN: 3303990-07/18-002) using the 

Masterflex Industrial/Process Easy-LoadTM Pump Head (model 7529-30).  The pump was 

calibrated to a flow rate of 700 mL/minute.   

 

 

 

 

Figure 2-4.  Filtering apparatus used to concentrate Diluted and Clarified Egg Yolks into Hollow Fiber 

Concentrated Antibody. 

 

 

The filter concentrated the antibody solution until only foam remained in the line, 

and this concentrate was added to an equal volume of PBS and stored at -80°C.  This 

final 1:1 solution of concentrate and PBS was labelled and referred to as “Hollow Fiber 

Concentrated Antibody”.  The filtrate from the permeate line was also saved and labelled 

as “Hollow Fiber Filtrate”.  It should be noted that this highly concentrated antibody 
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separates into two distinct layers when refrigerated and should be shaken vigorously to 

homogenize before use. 

 

     

 

Figure 2-5.  Hollow Fiber Concentrated DWV and P. larvae IgY and corresponding filtrate, respectively. 

 

 

Purification of Antigen-Specific IgY via Exalpha EggsPress Kit 

For use as a standard with which to compare the Hollow Fiber Concentrated 

Antibody, a small aliquot of yolk was also processed via the EggsPress IgY Purification 

Kit from Exalpha.  This kit offers an efficient way to purify IgY from the egg yolks of 

immunized hens for research purposes without the loss of antibody activity.57  100 mL of 

yolks were added to a 1 L jar along with 5 volumes of cold Reagent A and gently 

stirred.57  This solution was incubated for two hours in the refrigerator.  After incubation, 
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the solution was shaken for homogenization and then centrifuged at 4,000 x g for 20 

minutes at 4°C.  The resulting colorless supernatant (400 mL) was transferred into a 

graduated cylinder and mixed slowly with an equal volume of Reagent B, stirring for two 

minutes.57  This suspension was then incubated a second time in the refrigerator for two 

hours.  After incubation, the suspension was shaken to homogenize and centrifuged at 

4,000 x g for 20 minutes at 4°C.  After this centrifugation, the supernatant was discarded.  

10 mL PBS was added to the first centrifuge tube, pipetted up and down to dissolve the 

pellet, and then transferred to the successive centrifuge tube, a process that was repeated 

until the pellets from all 10 centrifuge tubes were pooled together and suspended in the 

same 10 mL of PBS.  This entire process was performed on 100 mL of yolks from both 

DWV- and P. larvae-vaccinated hens. 

IgY ELISA 

 An indirect enzyme-linked immunosorbent assay (ELISA) was performed to 

quantify the amount and activity of antigen-specific IgY in each preparation.  Immulon 

2HB polystyrene microplates were coated with recombinant VP1, VP2, and VP3 by 

incubating plates at 4°C overnight with 100 uL per well of a 50 mM carbonate buffer, pH 

9.6, containing 1 ug/mL of each protein. 

 To begin the assays, plates were emptied and 100 μL of Thermo Fisher 

Scientific’s SuperBlock Blocking Buffer was added to each well using a multichannel 

pipette.  The plates were incubated for one hour at 37°C.  Following this first incubation 

period, the plates were emptied again and another 100 μL of SuperBlock was added to 

each well.  Next, 100 μL of primary antibody diluted 1:50 in SuperBlock was added to 

row A, pipetted up and down for mixing, and transferred likewise through rows B-H to 
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give a series of dilutions.  100 μL was removed and discarded from row H, giving all 

wells a final total volume of 100 μL.  The plates were then incubated a second time for 

one hour at 37°C.  A table of the ELISA plate setup showing primary antibodies used and 

dilutions is shown below.   

 

Table 2-1.  Plate setup and dilutions for IgY ELISA. 

 

 1 2 3 4 5 6 7 8 9 

A 1:100 1:100 1:100 1:100 1:100 1:100 1:100 1:100 Blank 

B 1:200 1:200 1:200 1:200 1:200 1:200 1:200 1:200 Blank 

C 1:400 1:400 1:400 1:400 1:400 1:400 1:400 1:400 Blank 

D 1:800 1:800 1:800 1:800 1:800 1:800 1:800 1:800 Blank 

E 1:1600 1:1600 1:1600 1:1600 1:1600 1:1600 1:1600 1:1600 Blank 

F 1:3200 1:3200 1:3200 1:3200 1:3200 1:3200 1:3200 1:3200 Blank 

G 1:6400 1:6400 1:6400 1:6400 1:6400 1:6400 1:6400 1:6400 Blank 

H 1:12800 1:12800 1:12800 1:12800 1:12800 1:12800 1:12800 1:12800 Blank 

 

Primary antibodies for each column are as follows: 1 – DWV EggsPress Kit Aby; 2 – DWV Hollow Fiber 

Concentrated Aby; 3 – DWV Hollow Fiber Filtrate; 4 – DWV Diluted and Clarified Egg Yolks; 5 – P. 

larvae EggsPress Kit Aby; 6 – P. larvae Hollow Fiber Concentrated Aby; 7 – P. larvae Hollow Fiber 

Filtrate; 8 – P. larvae Diluted and Clarified Egg Yolks; 9 – SuperBlock Control (Blank) 

 

Following incubation, plates were emptied and washed three times with 150 μL of 

a solution of phosphate buffered saline containing 0.05% tween 20 (PBS-tween) per well.  

Anti-chicken IgY horseradish peroxidase (HRP) served as the secondary antibody.  This 

antibody was diluted 1:1000 in SuperBlock and added at a volume of 100 μL per well.  

The plates were then incubated a third time, this time for 30 minutes at 37°C.  After 

incubation, plates were once again emptied and washed three times with 150 μL of PBS-
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tween per well.  Immediately following the final wash, 100 μL of SIGMAFASTTM OPD 

(o-phenylenediamine dihydrochloride), an HRP substrate, was added to each well and 

incubated for 15 minutes at room temperature.  After 15 minutes, 100 μL of 1.0 N HCl 

was added to each well to halt the reaction.  The optical densities of each well were then 

read at a wavelength of 460 nm using a Biotek plate reader. 

Preparation of P. Larvae Challenge 

Paenibacillus larvae was purchased from the American Type Collection 

Collection (ATCC 49843).  P. larvae was propagated on tryptic soy agar containing 5% 

sheep blood at 37°C.  Spores were isolated from 5-day cultures by flooding the plates 

with 3 mL of ice-cold PBS followed by gentle scraping with a sterile inoculation loop.  

Fluids were pipetted to a centrifuge tube and centrifuged at 1,000 x g for 5 minutes to 

pellet vegetative cells.  The supernatant containing spores was transferred to a new tube. 

Preparation of DWV Challenge 

A lot of 320 frozen honeybees was purchased from a commercial supplier.  Bees 

were frozen at -80°C followed by homogenization in a plastic liner containing 80 mL of 

PBS (10 mL PBS for every 40 bees) for a final volume of 88 mL.  This solution was 

centrifuged at 5,000 x g for 10 minutes at 4-8°C.  The insoluble orange portion of the 

supernatant and pellet were discarded, while the remaining supernatant was spun again at 

20,000 x g for 20 minutes at 4-8°C.  Again, the floating orange layer and pellet were 

discarded.  The remaining supernatant was then centrifuged at 75,600 x g (25,000 rpm) 

for two hours at 4-8°C.  The resulting pellet was suspended in 2 mL PBS, while the 
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supernatant was discarded.  The temperature during all centrifugation steps should be 

held between 4-8°C.  The challenge was stored at -80°C until use in larval challenges. 

Larval Experiments 

To test the effectiveness of the antibody, worker bee larvae were grown in-vitro 

according to the protocol described by Daniel Schmehl.58  A frame containing at least 

25% eggs and 1st instar larvae was selected from a hive and transported to the lab in an 

insulated box.  The frame was kept humidified (i.e. draped in wet paper towels) during 

transport.  Using a Chinese grafting tool, 1st instar larvae were grafted from the brood 

cells of the frame into queen cell cups (Mann Lake Ltd. Cat. #QC-520) inserted into each 

well of 48-well tissue culture plates.  Each queen cup contained 20 μL of Diet A at the 

time of grafting.  Larvae were fed according to Schmehl’s feeding schedule (see Tables 

2-2 and 2-3) with two exceptions: 20 μL of Diet A being administered on day 2 rather 

than 20 μL of Diet B; and an additional 10 μL of Diet A containing treatment was given 

on day 0, post-grafting.58  Larvae receiving challenge received challenge only on day 0, 

while larvae receiving antibody received antibody at the desired concentration in each 

feeding.  Rather than applying feed directly on top of larvae, it was pipetted down the 

side of the queen cups to avoid drowning. 
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Table 2-2.  Percent Composition of Larval Feed 

 

 Royal Jelly Glucose Fructose Yeast Extract Water 

Diet A 44.25% 5.30% 5.30% 0.90% 44.25% 

Diet C 50.00% 9.00% 9.00% 2.00% 30.00% 

 

Antibody and challenge were added at desired concentrations. 

 

 

Table 2-3.  Larval Feeding Schedule 

 

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 

20 μL Diet A 

10 μL Diet A 

+ Treatment 

None 20 μL Diet A 30 μL Diet C 40 μL Diet C 50 μL Diet C 

 

Days correspond to time since grafting.  Antibody groups were fed antibody in each feeding, while 

challenge groups were only fed challenge on day 0. 

 

Grafted larvae were then placed in a plastic container containing a supersaturated 

salt solution consisting of 80 g K2SO4, 200 g NaCl, and 500 mL H2O and incubated at 

35°C in a humidified incubator.  For both the DWV and P. larvae models, there was a 

negative control group receiving only feed and three Hollow Fiber Concentrated 

Antibody control groups without challenge (1:25 dilution, 1:100 dilution, and 1:400 

dilution) to test for toxicity.  Both models also had a positive control group receiving 

either DWV stock diluted 1:10 in larval feed (Type A DWV at 107 genome copies per 
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larvae) or P. larvae spore challenge material diluted 1:10 in larval feed.  Additionally, 

each model also had three final groups that received a 1:10 dilution of challenge material 

and one of the three aforementioned dilution levels of pathogen-specific Hollow Fiber 

Concentrated Antibody. 

Mortality assessment and feeding occurred every 24 hours post-grafting.  Dead 

larvae were identified by a combination of discoloration, a sunken appearance beneath 

the feed, and grossly apparent stunted growth relative to healthy control group 

individuals.  All dead larvae were removed daily, sorted by treatment group, and frozen 

for molecular analysis.  Larvae from each treatment group were separated into “live” and 

“dead” pools.  Larvae were considered “live” only if they survived until the experiment’s 

endpoint. 

Note: It is critical to use only 1st instar larvae for both DWV and P. larvae challenges, as 

larvae are most susceptible to these pathogens during the first 24-48 hours of life, post-

hatching. 
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Figure 2-6.  In-vitro A. mellifera larvae in queen cups during DWV challenge experiment.  Dead larvae 

have been removed and pooled for further analysis. 

 

 

DWV Real-Time PCR 

At the conclusion of each DWV in-vitro larval experiment, larvae from each 

treatment group were tested for the presence of DWV using QuantiTect SYBR Green 

Real-Time RT-PCR Kit.  Each pool of larvae was added to two volumes of PBS, crushed 

using a pipette tip, and vortexed for several seconds.  0.2 mL of each sample was added 

to a micro-centrifuge tube and spun at 2,000 x g for 5 minutes.   

100 μL of each resulting supernatant was added to 100 μL of Thermo Fisher 

Scientific’s PrepManTM Ultra and vortexed.  These tubes were placed on a heat block at 

98°C for 10 minutes.  After heating, samples were micro-centrifuged at 20,627 x g 
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(15,000 rpm) for 10 minutes.  The resulting supernatants were used as the template RNA 

samples for PCR.  The following volumes (given per sample) were combined to create 

the master mix: 0.5 μL PAN DWV Forward primer, 0.5 μL PAN DWV Reverse primer, 

12.5 μL 2X QuantiTect SYBR Green RT-PCR Master Mix, 8.75 μL nuclease-free water, 

0.25 μL QuantiTect RT Mix, and 2.5 μL template RNA sample (total volume/well = 25 

μL).  Thermocycler settings are given in Table 2-4. 

 

Table 2-4.  Thermocycler Protocol Used for SYBR Green RT-PCR of DWV 

Cycle Repeats Step Dwell Time Set Point (°C) 

1 1 1 30:00 50.0 

2 1 1 15:00 95.0 

3 44 1 00:15 94.0 

  2 00:30 55.0 

  3 00:30 72.0 

 

 

 

P. Larvae Plating 

At the conclusion of each P. larvae in-vitro larval experiment, larvae were sorted 

by treatment groups and further separated into “live” and “dead” pools.  Each set of 

larvae was pooled in a tube and centrifuged at 1,000 x g for one minute to bring the 

minimal volume of larval remains to the bottom of the tube.  The remains were then 

suspended in two volumes of PBS and crushed using a pipette tip.  The tubes were spun 
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again at 1,000 x g for one minute to remove large and insoluble debris.  Using the 

resulting supernatant, a series of four dilutions in PBS was prepared for each sample: 10-

2, 10-4, 10-6, and 10-8.  100 μL of each dilution for each treatment was added to a tryptic 

soy broth + 5% sheep blood agar plate (BAP) and incubated at 37°C.  Colony counts 

were taken on days two and five. 
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CHAPTER THREE 

Results 

 

IgY Concentration 

Concentrated IgY solutions with anti-DWV and anti-P. larvae specificity were 

successfully created by processing the egg yolks of white leghorn chickens vaccinated 

against each respective antigen.  It was estimated that each egg provides approximately 

16.67 mL of yolk and 11.05 mL of Hollow Fiber Concentrated Antibody.   Each 100 mL 

batch of egg yolks purified using the Exalpha EggsPress Kit yielded a final volume of 17 

mL: 10 mL PBS and 7 mL of suspended antibody pellets.   

The antibody titer was qualitatively determined by utilizing indirect enzyme-

linked immunosorbent assay (ELISA), with VP1, VP2, and VP3 acting as the antigens for 

the anti-DWV ELISA and P. larvae as the antigen for the anti-P. larvae ELISA.  For 

each model, Diluted and Clarified Egg Yolks from hens non-immunized for the antigen 

of interest were run as a control.  The antibody titers for the various antibody preparations 

are illustrated below with absorbance readings charted as a function of dilution. 
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Figure 3-1.  Enzyme-linked immunosorbent assay data for processed P. larvae-specific antibody.  1:250 

dilution was used for primary antibody (various preparations of IgY) and 1:5000 dilution was used for 

secondary antibody (horseradish peroxidase).  P. larvae was the antigen.  Anti-DWV Diluted and Clarified 

Egg Yolks (non-immunized for P. larvae) were run as a control.  “Kit Purified” refers to antibody 

concentrated using the Exalpha EggsPress IgY Purification Kit, which was used as a standard.  “Filtrate” 

refers to the waste from the permeate line during filtration. 

 

 

Figure 3-2.  Enzyme-linked immunosorbent assay data for processed DWV-specific antibody.  1:50 

dilution was used for primary antibody (various preparations of IgY) and 1:1000 dilution was used for 

secondary antibody (horseradish peroxidase).  VP1, VP2, and VP3 proteins acted as the antigen.  P. larvae 

samples were run as controls.  “Kit Purified” refers to antibody concentrated using the Exalpha EggsPress 

IgY Purification Kit, which was used as a standard.  “Filtrate” refers to the waste from the permeate line 

during filtration. 
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In both the anti-P. larvae and anti-DWV models, Hollow Fiber Concentrated 

Antibody demonstrated a much higher antibody titer than its unfiltered counterpart, the 

Diluted and Clarified Egg Yolks.  The Hollow Fiber Concentrated Antibody also 

demonstrated a much higher antibody titer than the Hollow Fiber Filtrate, providing 

evidence that the filtering process was effective and that it efficiently captured the IgY.  

Additionally, the Hollow Fiber Concentrated Antibody either surpassed (in the case of 

the anti-DWV model) or nearly attained (in the case of the anti-P. larvae model) the 

standard of the Exalpha EggsPress IgY Purification Kit.  In both models, the non-specific 

Diluted and Clarified Egg Yolks functioning as a control showed very low titers of 

antibodies that demonstrated activity against the pathogen of interest. 

P. Larvae Challenge Model Larval Mortality 

The P. larvae larval challenge model was carried out for three days.  All antibody 

administered in this model was Hollow Fiber Concentrated Antibody.  The daily 

mortality data is displayed in the following table. 

Note: The P. larvae model used the antibody-only controls from the DWV model, as all 

component concentrations and preparation procedures of the solutions were entirely 

identical. 
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Table 3-1.  P. larvae challenge model daily mortality (number of new larval deaths per day) 

 

Treatment Group Day 1 Day 2 Day 3 Total 

Control (Feed Only) 0 1 0 1 

1:25 DWV Aby 0 0 0 0 

1:100 DWV Aby 0 0 0 0 

1:400 DWV Aby 0 1 0 1 

1:10 P.L. Spores 0 4 20 24 

1:25 P.L. Aby / 1:10 P.L. Spores 0 2 16 18 

1:100 P.L. Aby / 1:10 P.L.  Spores 0 1 3 4 

1:400 P.L. Aby / 1:10 P.L. Spores 0 2 12 14 

 

These results revealed that among larvae receiving P. larvae spore challenge, those 

also receiving a 1:100 dilution of P. larvae aby (1:100 P. larvae Aby / 1:10 P. larvae 

spores) displayed by far the lowest mortality rates.  Therefore, the 1:100 P. larvae Aby 

dilution was considered the minimum protective dosage to significantly reduce P. larvae-

related mortality.  Only the following four treatment groups were considered for 

statistical analysis: Control (Feed Only), 1:100 DWV aby, 1:10 P. larvae spores, and 

1:100 P. larvae aby / 1:10 P. larvae spores.  The cumulative mortality percentages of 

these four groups throughout the three-day duration of this experiment is shown in Figure 

3-3. 
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Figure 3-3.  Cumulative larval mortality percentages through three-day P. larvae challenge model.  Data 

labels display total group mortality percentages at the experiment’s endpoint (t = 3 days). 

 

 

The data was analyzed using the Kaplan-Meier method for survival analysis.59  Using 

this model, it was assumed that the probability of individuals being censored was the 

same for all groups and did not affect the outcome, survival probabilities were the same 

for all individuals in all groups, and the event of interest (death) occurred at the specified 

times.59  The Kaplan-Meier survival curves with 95% confidence intervals for each group 

are displayed below.  Larvae surviving beyond day 3 are considered right-censored and 

are therefore indicated by a tick mark. 
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Figure 3-4.  Survival curves for P. larvae model with 95% confidence intervals.  Tick marks represent 

censored individuals (larvae that survived to endpoint). 
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The survival data of the four groups was then compared using the log-rank test, which 

operates under the same assumptions as the Kaplan-Meier method.  The null hypothesis 

(H0) for each comparison was that the mortality rates of the two groups being compared 

had no significant difference over the three-day experiment.  The alternative hypothesis 

(H1) was that one of the groups had a significantly higher mortality rate than the other 

over the three-day experiment.  One degree of freedom (df=1) and a confidence level of 

95% was utilized (α = 0.05), meaning a p-value of less than 0.05 was sufficient to reject 

the null and imply a significant difference in mortality. 

 Four separate comparisons of mortality rates were made between groups.  The 

first compared the control (feed only) group and the 1:100 DWV aby group to test for 

potential antibody toxicity.  Log-rank analysis gave a p-value of 0.3, failing to reject the 

null and showing no significant difference between mortality rates.  No difference in 

these mortality rates suggests that the 1:100 dilution of antibody was nontoxic. 

The next comparison was between the control (feed only) group and the 1:10 P. 

larvae spore challenge group.  This comparison functioned to test for pathogenicity of the 

P. larvae challenge material, and it yielded a p-value of 6e-10.  This result rejected the 

null and implied a significantly higher mortality in the group receiving P. larvae spore 

challenge than in the control group receiving feed only.  It was therefore assumed that the 

P. larvae spore challenge material was responsible for inducing a higher rate of mortality 

than was seen in the control group. 

The third comparison was between the 1:10 P. larvae spore challenge group and the 

1:100 P. larvae aby / 1:10 P. larvae spore treatment group.  This comparison tested to see 

if larvae receiving antibody in addition to challenge material survived at a significantly 
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higher rate than larvae receiving only challenge material.  This log-rank comparison 

returned a p-value of 4e-8, rejecting the null and suggesting that larvae receiving a 1:100 

dilution of P. larvae-specific antibody in their feed in addition to the DWV challenge 

material had a significantly lower mortality rate and higher rate of survival than larvae 

receiving only challenge. 

The last comparison was between the control (feed only) group and the 1:100 P. 

larvae aby / 1:10 P. larvae spore treatment group.  This comparison tested for a potential 

difference in the mortality rate of larvae challenged with P. larvae spores and treated 

with antibody compared to larvae receiving no challenge or antibody.  This log-rank 

analysis returned a p-value of 0.2, failing to reject the null hypothesis and implying that 

the larvae receiving both challenge and antibody treatment did not die at a higher rate 

than larvae receiving only feed in the control group.   

P. Larvae Challenge Model CFU Evaluation 

 Colony counts from the dilution series plated with the prepared larvae from the P. 

larvae challenge model were taken on days 2 and 5 to calculate CFU/mL.  The results are 

summarized in Figure 3-5. 
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Figure 3-5.  CFU/mL values of larvae from P. larvae challenge model. 

 

 

 The CFU data closely matched the mortality data; the feed-only controls were 

negative for P. larvae cells and the challenge group had the most viable P. larvae cells.  

More significantly, however, of the treatment groups receiving both challenge and anti-P. 

larvae IgY, the group receiving the 1:100 dilution of antibody demonstrated the fewest 

CFU/mL.  The 1:100 P. larvae Aby / 1:10 P. larvae spores treatment group had both the 

lowest mortality rate and lowest CFU/mL value.  This alignment with the mortality data 

reinforces the conclusion that the 1:100 dilution of anti-P. larvae IgY corresponds to the 

minimum protective dosage. 
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DWV Challenge Model Larval Mortality 

 The DWV larval challenge model was carried out for five days.  All antibody 

administered in this model was Hollow Fiber Concentrated Antibody.  The daily 

mortality data is displayed in the following table. 

Table 3-2.  DWV challenge model daily mortality (number of new larval deaths per group per day) 

Treatment Group (n=24) Day 1 Day 2 Day 3 Day 4 Day 5 Total 

Control (Feed Only) 0 1 0 2 3 6 

1:25 DWV Aby 0 0 0 0 0 0 

1:100 DWV Aby 0 0 0 0 0 0 

1:400 DWV Aby 0 1 0 0 0 1 

1:10 DWV 0 1 1 2 15 19 

1:25 DWV Aby / 1:10 DWV 0 0 2 0 8 10 

1:100 DWV Aby / 1:10 DWV 0 1 0 2 4 7 

1:400 DWV Aby / 1:10 DWV 0 0 0 1 5 6 

  

This data demonstrates that among larvae receiving DWV challenge, those also 

receiving a 1:100 dilution of DWV aby (1:100 DWV Aby / 1:10 DWV) displayed among 

the lowest mortality rates.  Therefore, the 1:100 DWV Aby dilution was considered the 

minimum protective dosage to significantly reduce DWV-related mortality.  The 

following four treatment groups were considered for statistical analysis: Control (Feed 

Only), 1:100 DWV Aby, 1:10 DWV, and 1:100 DWV Aby / 1:10 DWV.  The cumulative 

mortality percentages of these four groups throughout the duration of the experiment is 

visualized in Figure 3-6. 
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Figure 3-6.  Cumulative larval mortality percentages through five-day DWV challenge model.  Data labels 

display total group mortality percentages at the experiment’s endpoint (t = 5 days). 

 

 

 The data was then analyzed using the Kaplan-Meier method for survival 

analysis.59  Using this model, it was assumed that the probability of individuals being 

censored was the same for all groups and did not affect the outcome, survival 

probabilities were the same for all individuals in all groups, and the event of interest 

(death) occurred at the specified times.59  The Kaplan-Meier survival curves with 95% 

confidence intervals for each group are displayed below.  Larvae surviving beyond day 5 

are considered right-censored and are indicated by a tick mark. 
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Figure 3-7.  Survival curves for DWV model with 95% confidence intervals.  Tick marks represent 

censored individuals (larvae that survived to endpoint). 
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The survival data of the four groups was then compared using the log-rank test, which 

operates under the same assumptions as the Kaplan-Meier method.  The null hypothesis 

(H0) for each comparison was that the mortality rates of the two groups being compared 

had no significant difference in mortality rate over the five-day experiment.  The 

alternative hypothesis (H1) was that one of the groups had a significantly higher mortality 

rate than the other over the five-day experiment.  One degree of freedom (df=1) and a 

confidence level of 95% was utilized (α = 0.05), meaning a p-value of less than 0.05 was 

sufficient to reject the null and imply a significant difference in mortality. 

Four mortality comparisons were made between groups.  The first comparison was 

between the control (feed only) group and the 1:100 DWV aby group to test for antibody 

toxicity.  Log-rank analysis gave a p-value of 0.01, implying that the group receiving 

antibody had a significantly lower mortality than the feed-only controls.  However, as 

zero larvae died in the 1:100 DWV aby group, it was assumed that there was no antibody 

toxicity. 

The next comparison was between the control (feed only) group and the 1:10 DWV 

challenge group.  This comparison was made to test for pathogenicity of the DWV 

challenge material and it yielded a p-value of 0.001.  This result was sufficient to reject 

the null and implied a significantly higher mortality in the group receiving DWV 

challenge than in the control group receiving feed only.  It was therefore assumed that the 

DWV challenge material was responsible for the difference in mortality rates. 

 The third comparison was between the 1:10 DWV challenge group and the 1:100 

DWV Aby / 1:10 DWV challenge treatment group.  This tested to see if larvae receiving 

both antibody and challenge fared better than larvae receiving only challenge.  This log-
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rank comparison returned a p-value of 0.002, rejecting the null and implying that larvae 

receiving a 1:100 dilution of antibody in their feed in addition to the DWV challenge 

material had a significantly lower mortality rate than larvae receiving only challenge. 

The final comparison was between the control (feed only) group and the 1:100 DWV 

Aby / 1:10 DWV treatment group.  This comparison aimed to detect if larvae challenged 

with DWV and treated with antibody fared any worse than larvae receiving no challenge 

or antibody.  This log-rank analysis returned a p-value of 0.8, failing to reject the null 

hypothesis and implying that larvae receiving both challenge and antibody treatment did 

not die at a higher rate than larvae receiving only feed in the control group.   

DWV Challenge Model RT-PCR Evaluation 

 To confirm the mortality data on a molecular level, real-time reverse transcriptase 

PCR was performed on all larvae, both dead and alive, in all groups at the conclusion of 

the five-day DWV model.  Overall Ct values for each treatment group were calculated by 

determining the weighted Ct value of the dead and alive larvae in that group according to 

the following formula: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑡 =  
𝐶𝑡𝑑𝑒𝑎𝑑(# 𝑙𝑎𝑟𝑣𝑎𝑒 𝑖𝑛 𝑙𝑜𝑡)+ 𝐶𝑡𝑎𝑙𝑖𝑣𝑒(# 𝑙𝑎𝑟𝑣𝑎𝑒 𝑖𝑛 𝑙𝑜𝑡)

24
 

The results are summarized in Table 3-3 and Figure 3-8. 
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Table 3-3.  SYBR Green RT-PCR Ct Values of Larvae from DWV Model 

 

Group Weighted Ct Value 

Control (Feed Only) 37.100 

1:25 DWV Aby 37.100 

1:100 DWV Aby 37.100 

1:400 DWV Aby 37.190 

1:10 DWV 25.270 

1:25 DWV Aby / 1:10 DWV 32.951 

1:100 DWV Aby / 1:10 DWV 29.229 

1:400 DWV Aby / 1:10 DWV 28.525 

 

 

 

Figure 3-8.  DWV RT-PCR results from DWV larval challenge model.  The reported Ct values represent 

weighted averages of live and dead larvae pools from each experimental treatment group. 

  

The RT-PCR results closely align with the DWV challenge model mortality data.  
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the groups receiving both DWV challenge and anti-DWV IgY, the Ct value is directly 

proportional (and the viral titer is inversely proportional) to the volume of IgY 

administered to each respective group.  This finding suggests that as more anti-DWV IgY 

is administered, more DWV viral particles are neutralized.  
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CHAPTER FOUR 

Discussion 

 

The results of the presented research suggest that passive pathogen-specific IgY 

can be effectively generated by vaccinating white leghorn chickens against various 

antigens and that these antibodies are entirely safe and nontoxic to A. mellifera.  At all 

dosages tested in the larval trials, none of the control groups receiving Hollow Fiber 

Concentrated Antibody demonstrated significantly higher rates of mortality than the feed-

only control group, suggesting no toxicity of the antibody in either model.  Interestingly, 

in the DWV model, a significantly lower mortality rate was detected in the antibody 

controls than in the feed only controls.  Given that RT-PCR showed the controls to be 

negative for DWV, it is not plausible for this difference to be explained by the presence 

of endemic DWV in the colony from which tested larvae were grafted.  This unexpected 

finding may suggest that the administered IgY has additional benefits during 

development that were beyond the scope of this study. 

The results also demonstrate that pathogen-specific antibodies are highly effective 

for the treatment of DWV and P. larvae, two of the most detrimental pathogens facing A. 

mellifera.  Larvae receiving a 1:100 dilution of anti-DWV Hollow Fiber Concentrated 

Antibody in addition to DWV challenge demonstrated a statistically significant 50% 

reduction in mortality compared to larvae receiving DWV challenge alone.  No 

significant difference was found between the mortality of feed only control larvae and the 

mortality of larvae receiving both challenge and anti-DWV IgY.  This suggests that even 

when challenged, larvae treated with Hollow Fiber Concentrated Antibody are no more 
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likely to die than larvae subjected to the feed only control condition.  This result was 

supported by RT-PCR data that reveals a clear inversely proportional relationship 

between the quantity of antibody administered and DWV titer. 

Similar findings were derived from the P. larvae model.  Larvae receiving a 1:100 

dilution of anti-P. larvae Hollow Fiber Concentrated Antibody in addition to P. larvae 

challenge demonstrated a statistically significant 83% reduction in mortality compared to 

larvae receiving only P. larvae challenge.  Likewise, no significant difference was found 

between the mortality of feed-only control larvae and the mortality of larvae receiving 

both challenge and anti-P. larvae IgY.  This suggests that even when challenged, larvae 

treated with Hollow Fiber Concentrated Antibody are no more likely to die than larvae 

subjected to the feed only control condition.  This result was largely supported by the 

CFU/mL data collected on these larvae.  Among the treatment groups receiving 

challenge, the CFU/mL value was lowest in the group additionally receiving a 1:100 

dilution of Hollow Fiber Concentrated Antibody, matching the mortality data.  CFU/mL 

values were unexpectedly high in the treatment groups receiving challenge and either 

1:25 antibody or 1:400 antibody.  For the 1:400 antibody group, it was surmised that 

these results were due to the dosage being below the minimum protective dosage.  In the 

1:25 antibody group, it was speculated that elevated antibody levels led to an increased 

titer of antibody-antigen complex, which may have contributed to pathophysiological 

effects contributing to larval death and ultimately allowing for further propagation of P. 

larvae post-mortem. 

Modern honeybees face a plethora of risk factors and threats to their health and 

ultimate survival.  Of the limited options currently available for CCD prevention and/or 
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treatment, most are focused exclusively on the control of Varroa.  Controlling mite levels 

is important, but these options alone offer limited flexibility and benefits.  Given the 

multifactorial nature of CCD and the many pathogens that contribute to it, multipronged 

treatment methods are likely to be the most effective.  Aside from DWV, at least 22 other 

honeybee viruses have been identified, and eight of these are considered to cause severe 

or lethal illness, including Kakugo Virus (KV), Israeli Acute Paralysis Virus (IAPV), 

Sacbrood Virus (SBV), Black Queen Cell Virus (BQCV), Kashmir Bee Virus (KBV), 

Acute Bee Paralysis Virus (ABPV), and Chronic Bee Paralysis Virus (CBPV).60  With the 

exception of CBPV, all of these viruses share many conserved and consensus sequences 

within their genomes and have several morphological similarities such as a 20-30 nm 

diameter and an isometric protein capsid consisting of 60 repeated protomers that contain 

the VP1, VP2, and VP3 subunits.60  All these viruses also have similar horizontal and 

vertical routes of transmission.  Given these similarities, it seems probable that the 

technology described in this research could be effectively applied to these viruses as well.  

While these additional viruses were beyond the scope of this study, further testing is 

necessary to determine how broadly this technology can be applied. 

This technology also has the potential to be effective in treating other species 

within the Apidae family, including not only other members of the Apis (honeybee) 

genus, but also of the Bombus (bumblebee) genus.  Much like Apis, Bombus also plays an 

important role in the pollination of natural flora and is occasionally used commercially in 

greenhouses (usually Bombus terrestris).61  Bombus is afflicted by many of the same 

pathogens as Apis, most notably DWV, which has the same deleterious effects on both 

honeybees and bumblebees.  Furthermore, there is evidence that domesticated Apis is 
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responsible for spreading pathogens to native Bombus.61  As domesticated honeybees 

continue to be used in new regions and at higher rates for commercial purposes, an 

increased potential arises for the transmission of viruses to the native Bombus species.  

Pathogen-specific antibody treatments could therefore benefit Bombus not only by 

possibly being effective when directly applied to Bombus colonies, but also by 

neutralizing these antibodies in the domesticated Apis colonies from which these 

pathogens are spread. 

The potential for an antibody treatment specifically formulated to target the most 

prevalent pathogens in a given apiary or region brings with it the necessity for efficient 

and affordable diagnostic testing to be made available to beekeepers.  Monitoring the 

levels of various pathogens within the herd is a common practice in the husbandry of 

swine, cattle, poultry, etc. due to the availability of effective treatment options.  The 

development of similar pathogen-specific treatment options for honeybees should bring 

about a paradigm shift in the methodology and philosophy of beekeeping.  Cost-effective 

multiplex PCR panels may be developed along with a means of hive sample collection 

(i.e. honeycomb, larval specimen, worker specimen, etc.) and transport to allow for 

efficient and thorough diagnostic analysis and diagnosis.  Additionally, increased 

knowledge and understanding of the nature and mechanisms of these pathogens is likely 

to result from higher surveillance of hives.  Metagenomic sequencing of such samples 

also has the potential to further reveal novel pathogens within the sampled colonies. 

  



51 
 

CHAPTER FIVE 

Conclusion 

 

 Honeybee populations are in a precarious position, and the discouraging trends in 

their numbers and health are likely to continue without a focused effort by beekeepers to 

mitigate some of the factors contributing to CCD in their apiaries.  While individual 

apiarists cannot assess factors such as reduced plant diversity and climate change on their 

own, they should be committed to taking steps to reduce the levels of dangerous and 

potentially lethal pathogens inside their colonies.  DWV and P. larvae are currently two 

of the most detrimental pathogens to overall hive health and are known to initiate and/or 

accelerate the onset of CCD. 

 The production of viable, pathogen-specific IgY antibodies is possible when avian 

species are vaccinated for a given antigen and subsequently confer these antibodies to the 

yolks of the eggs they lay through passive immunity.  Producing antibodies for 

biomedical purposes in this manner is far more cost-effective, efficient, and sustainable 

than many of the far more invasive methods currently employed for IgG collection.  In 

addition to the ease with which these antibodies can be produced and concentrated, there 

is also mounting evidence that they are safe and effective for use in treating non-avian 

pathogens in non-avian species, such as DWV and P. larvae in A. mellifera. 

 The effectiveness with which IgY can treat pathogens in honeybees is an 

unexpected finding that holds lots of promise for the future of honeybee health, apiary 

revenues, and the overall success of the agriculture industry as it struggles to continually 

meet the growing global demand for food supply.  The introduction of effective 
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treatments for DWV, P. larvae, and the potential for creation of IgY treatments for 

additional honeybee pathogens could revolutionize the future of honeybee health and 

beekeeping.  Supplementing colonies with pathogen-specific IgY can offer the necessary 

protection to help compensate for honeybees’ limited immune systems and ultimately 

help stabilize the shrinking honeybee population – cause for great encouragement and 

enthusiasm among apiarists and bee enthusiasts alike.  
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