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ABSTRACT  

Chronic respiratory diseases, ranking as the third leading cause of death worldwide according to 

the 2017 World Health Organization (WHO) report, affect a staggering 544.9 million individuals. 

Compounding this public health challenge is the fact that over 80% of health systems grapple with 

shortages in their radiology departments, highlighting an urgent need for accessible and efficient 

diagnostic solutions. While various image classification models for analyzing thorax abnormalities 

have been developed, relying solely on one type of dataset (image data, for example) for thorax 

abnormality analysis is insufficient. Integrating texts with image data could provide more accuracy 

as well as analysis. In response to this challenge, we propose a multimodal approach to generate 

detailed radiology reports from chest X-ray images and their corresponding radiological reports 

(Impression and Findings). Our framework integrates a pre-trained Convolutional Neural Network 

(CNN) for robust image feature extraction, a Recurrent Neural Network (RNN), and a visual 

attention mechanism to ensure coherent sentence generation. The image encoder employs the 

ResNet152 architecture to extract nuanced visual features from chest X-ray images. 

Simultaneously, the sentence generation model utilizes a Long Short-Term Memory (LSTM) layer 

to process textual data and generate contextually relevant reports. On an IU dataset of 7470 pairs 

of X-ray images and 3995 reports, our model exhibited superior performance based on language 

generation metrics (BLEU1= 0.4424, BLEU2= 0.2923, BLEU3= 0.207, BLEU4= 0.1464, 

ROUGE= 0.3396, and CIDEr= 0.2268), providing accurate and coherent impressions and findings 

compared to other benchmark models. For a reproducibility purpose, the implementation code is 

available: https://github.com/2ai-lab/Report-Generation 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

1. Introduction 
 

1.1. Context and problem 

Pulmonary abnormalities [1] [2] encompass a range of disruptions in the natural lung function, 

often stemming from various lung diseases like Pneumonia [3], Chronic Obstructive Pulmonary 

Disease (COPD), Atelectasis, Effusion, Pneumothorax, Cardiomegaly, and others. Notably, the 

year 2017 saw a staggering 544.9 million individuals worldwide grappling with chronic respiratory 

diseases, marking them as the third leading cause of death for that year, as meticulously 

documented by the World Health Organization (WHO) [4]. Pneumonia alone accounted for the 

loss of around 808,000 lives in 2017, with children under five years old tragically contributing to 

15% of these fatalities. While the mortality rate among the elderly has exhibited consistency since 

1990, tuberculosis (TB) casts a shadow over 10 million individuals (about half the population of 

New York) and resulted in 1.4 million fatalities in 2019. These compelling statistics poignantly 

underscore the imperative need to focus on understanding pulmonary disorders and abnormalities 

[5], a sentiment echoed in. 

To diagnose such conditions, it’s universally acknowledged that thorough analysis of medical 

images such as ultrasound, X-ray, Magnetic Resonance Imaging (MRI), Computed Tomography 

(CT), or pathological imaging is quintessential. Many deep learning models used only images data 

to analyze pulmonary diseases [6] including COVID-19 [7] [8] [9]. Although it is analyzed with 

medical images it needs to be generalized and presented in the form of a report for better 

application. This demanding task calls for the expertise of skilled physicians, and radiologists who 

meticulously compose diagnostic reports for single patients. An example of one of these reports is 

provided in Figure 2. Even while a single medical report may appear simple, a considerable 

proportion of individuals come up with unexpectedly complex and aberrant medical images [10]. 

Consequently, analyzing and articulating textual reports, tasks that demand seasoned expertise, 

can exact substantial time and stress from professionals. Within this context, the emergence of 

automated diagnostic report generation with the help of medical images stands as an imperative 

trend, positioned to alleviate this burdensome challenge [11]. 

The trend toward automated diagnostic medical report generation from medical images is 

becoming increasingly indispensable to alleviate this workload. To achieve this, researchers have 

harnessed a diverse range of deep learning (DL) algorithms. These advanced approaches have 

effectively facilitated the generation of reports for lung diseases, thereby significantly reducing the 
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time required for prognosis. Additionally, the widespread implementation of various DL 

techniques using an encoder and decoder architecture which was used for machine translation 

before has further extended the capacity to generate reports from medical images, demonstrating 

the capabilities of cutting-edge techniques in this domain [12]. While impression can be generated 

by existing image captioning models that describe an image with a sentence [13].  

These existing models’ RNNs can’t handle extended paragraphs or sequences because of their 

exploding or vanishing gradients [14]. With a gating mechanism to learn long-term dependencies, 

Long Short-Term Memory (LSTM) helps to some extent to ease this problem, but it is still unable 

to fully prevent gradient vanishing and presents challenges when modeling long-term sequences. 

In the field of natural image captioning, hierarchical recurrent networks have been the subject of 

some groundbreaking work to provide a paragraph description or extended sequence [15]. For 

paragraph generation, they often employ two layers of RNNs: a paragraph-level RNN creates 

certain topics first, and a sentence-level RNN uses the topics as input to produce related sentences. 

1.2. Goal 

Overall, the main objective of the thesis is to generate multi-sentence textual reports describing 

abnormalities in detail comparable to human-authored reports, as evaluated by clinical radiologists 

through quantitative metrics and qualitative assessments. We designed an end-to-end neural 

network model architecture that effectively represents both visual image data from chest x-rays 

and sequentially generated textual findings integrating convolutional image encoding with 

recurrent text decoding components where the first sentence originates, and each subsequent 

sentence is generated using the input image’s encoding as well as the previous sentences. 

1.3. Research hypothesis and contributions 

The integration of deep neural network models, featuring a Convolutional Neural Network (CNN) 

for image encoding, a specialized Recurrent Neural Network (RNN) for initial sentence 

generation, a convolutional encoder for sentence representation, and a recurrent decoder with 

attention for subsequent sentence generation, will enable the effective generation of radiology 

reports from chest X-ray images. Leveraging transfer learning with a pre-trained ResNet-152 

model and training end-to-end on a chest X-ray dataset, the proposed model will demonstrate a 

balance between visual evidence representation and textual description. The hypothesis posits that 

the developed deep learning techniques will yield clinically accurate and utility-enhanced 

radiology reports, as evidenced by quantitative metrics (BLEU, ROUGE, CIDEr) and validated 

through human evaluations by clinical radiologists. 

In this thesis, we developed deep neural network models to generate radiology findings from chest 

x-ray images. The methods consist of four key components image encoder, initial sentence 

generator, sentence encoder and decoder. Image encoder is a Convolutional Neural Network 

(CNN) which encodes chest x-rays to extract visual features where transfer learning will utilize a 

pre-trained ResNet-152 model initialized with weights learned on ImageNet. This CNN will 

encode both local and global image features to represent visual evidence. Initial sentence generator 

is a specialized Recurrent Neural Network (RNN) module which generates the first impression 
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sentence based solely on the global image features. Thus, this provides an introductory summary 

of the image. Sentence encoder is a convolutional encoder that will encode the previous sentence 

into a condensed semantic vector representation. This captures the meaning to provide context. A 

recurrent decoder RNN with attention will generate each subsequent sentence conditioned on the 

image features and previous sentence representation. The attention mechanism will focus on 

pertinent local visual evidence. 

The model will be trained end-to-end on the chest x-ray dataset including the radiologist’s report 

to learn parameters recursively until a stop condition. Natural Language Generation (NLG) 

metrices such as BLEU, ROUGE and CIDEr will be used in Quantitative evaluation. Human 

evaluations by clinical radiologists will assess clinical accuracy and utility. The results identify 

strengths, limitations, and areas of improvement. This approach will demonstrate the ability of 

deep learning techniques developed to generate radiology reports directly from medical images. 

The method strikes a balance between the representation of visual evidence and the textual 

description. 

1.4. Thesis outline 

Chapter 2: Related works 

This chapter reviews existing literature and related works, with a particular focus on metrics such 

as BLEU, ROUGE, and CIDEr. This section serves to establish a foundation of knowledge by 

examining prior research in the domain of generating textual outputs from visual inputs, providing 

insights into the metrics used for evaluation. 

Chapter 3: Dataset 

The dataset section provides an in-depth exploration of the dataset used in the study. A detailed 

description of the dataset is presented, highlighting its relevance to the research. The section 

concludes with a summary, synthesizing the key aspects of the dataset that contribute to the study.

  

Chapter 4: Deep learning, encoder-decoder architecture, visual attention 

This chapter is a comprehensive exploration of the proposed deep learning model. It begins with 

an overview, followed by detailed discussions on various components such as neural networks, 

activation functions, ResNet, recurrent neural networks, attention networks, and visual features 

[16]. The section aims to provide a thorough understanding of the model's architecture and its 

constituent elements. 

Chapter 5: Multimodal learning and implementation 

This chapter introduces the concept of multimodal learning, exploring its various modalities such 

as text, image, audio, and video. Applications of multimodal learning are discussed, including 

image and text captioning, speech-to-text, video analysis, healthcare informatics, human-computer 

interaction, and social media analysis. Challenges in multimodal learning, such as heterogeneity, 

data fusion, and ethical considerations, are also addressed. This section also explains 
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implementation employed in the study. Each step of the process is explained, including the image 

encoder, sentence and paragraph generation model, sentence encoder, and sentence decoder. The 

section concludes with a summary that ties together the key methodological choices made in the 

study. 

Chapter 6: Experiments 

This chapter begins with an exploration of the experimental setup, detailing how the model was 

trained and evaluated. The results of the experiments are presented, offering insights into the 

model's performance. Sample outputs are showcased to provide tangible examples. The section 

concludes with a summary, summarizing the findings and outcomes. 

Chapter 7: Conclusion 

This chapter of the thesis wraps up the study by presenting conclusions drawn from the research. 

It also outlines potential avenues for future research, suggesting areas where further exploration 

and refinement of the proposed model could be undertaken. 

1.5. Summary 

This chapter addresses the critical issue of diagnosing pulmonary abnormalities using medical 

images, considering the prevalence of chronic respiratory diseases. The introduction emphasizes 

the global impact of such conditions, underscoring the need for efficient diagnostic tools. The main 

goal is to generate detailed multi-sentence textual reports for abnormalities, comparable to human-

authored reports. The proposed end-to-end neural network model combines convolutional image 

encoding and recurrent text decoding, integrating deep learning techniques. The research 

hypothesis posits that this model, leveraging transfer learning and trained on a chest X-ray dataset, 

will yield clinically accurate radiology reports. The thesis outline includes chapters on related 

works, dataset exploration, model architecture, multimodal learning, methodology, and 

experimental results. The concluding chapter summarizes the findings, presents conclusions, and 

suggests future research directions. 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 2 

2. Related works 
 

In the last few years, numerous datasets of chest radiographs, comprising nearly one million X-

ray images, have been released to the public. The development of efficient computational models, 

harnessing information from both medical images and textual reports, is an evolving area. 

Integrating image and text data proves beneficial in enhancing model performance for tasks like 

image annotation and the automated generation of reports [17]. 

One of the most popular related works to ours is image captioning [18] which describes images 

with sentences. Different from the image captioning model, radiology report generation requires 

much longer generated outputs consisting of different patterns as features, so this task has its own 

characteristics that require solutions. For example, Xue, et al. [19] proposed an attention 

mechanism and leveraged a hierarchical Long Short-Term Memory (LSTM) to generate automated 

reports introducing the concept of a multimodal network. Xuewei, et al. [20] proposed contrastive 

attention for automatic chest x-ray report generation. 

Schlegl et al. [21] introduced a weakly supervised learning approach, using semantic descriptions 

in reports as labels to enhance the classification of tissue patterns in optical coherence tomography 

(OCT) imaging. In radiology, Shin et al. (2016) proposed a framework involving convolutional 

and recurrent networks jointly trained on image and text data to annotate disease, anatomy, and 

severity in chest X-ray images. Similarly, Moradi et al. [22] processed image and text signals 

together to generate regions of interest in chest X-ray images. Shin et al. [23], Wang et al. [24] 

utilized radiological reports to create disease and symptom concepts as labels. They employed 

techniques like Latent Dirichlet Allocation (LDA) for topic identification and disease detection 

tools such as DNorm, MetaMap, and various Natural Language Processing (NLP) tools for 

downstream chest X-ray classification with a convolutional neural network. Additionally, they 

provided the label set alongside the image data. 

Subsequently, Wang et al. [25]  utilized the same Chest X-ray dataset to enhance the performance 

of disease classification and the generation of reports from images. In the realm of report 

generation, Jing et al. [26] developed a multi-task learning framework featuring a co-attention 

mechanism module and a hierarchical long short-term memory (LSTM) module. This framework 

was designed for radiological image annotation and the generation of report paragraphs. Li et al. 

[27] introduced a reinforcement learning-based Hybrid Retrieval-Generation Reinforced Agent 
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(HRGR-Agent) to train a report generator capable of deciding whether to retrieve a template or 

generate a new sentence. 

2.1. State-of-the-art literature 

Johnson et al. [28] a pre-trained dense-captioning model to identify image semantic regions. 

Nevertheless, there are no pre-trained models accessible for medical images. Shin et al. [23] 

developed a DL system to automatically annotate chest X-rays with Medical Subject Headings 

(MeSH) annotations for the first time, to achieve the aims of medical image annotation. To 

categorize the X-ray pictures with various disease diagnoses, they employ CNN. Next, more 

detailed descriptions of the settings around identified diseases are provided to RNNs who are 

trained for it. Moreover, a cascade approach is utilized to integrate textual and visual contexts to 

enhance annotation performance. In Zhang et al. [29], a direct multimodal mapping is established 

between diagnostic results and medical images. Their most effective method of learning image-

language alignments is the Auxiliary Attention Sharpening (AAS) module. However, compared to 

conventional radiology report generation, their problem is less complex because the diagnostic 

reports they generate are limited to defining five categories of cell appearance attributes. 

A hierarchical encoder-decoder design is suggested by Yuan et al. [30] to provide textual reports. 

The authors argue that rather than being processed independently, frontal, and lateral X-ray 

pictures should be complementary to one another, therefore pairs of these images are fed into the 

network as input. Three outputs are employed later: anticipated observations, medical concepts, 

and global and local aspects of the images. The encoder is the ResNet-152 model, which was pre-

trained on the CheXpert [31] dataset. The sentence decoder and word decoder are the two 

components of the hierarchical LSTM decoder. The sentence decoder uses visual features to 

produce a hidden state for every sentence. The word decoder then uses these hidden states and the 

anticipated medical ideas to produce the report. 

2.2. Evaluation metrics 

The survey by Messina et al. [32] categorizes evaluation metrics in the report generation task into 

two main categories: text quality measures, which are traditional Natural Language Processing 

(NLP) or Natural Language Generation (NLG) metrics, and clinical correctness measures, which 

aim to assess the clinical facts stated in the reports. Here we are focusing on the first metric which 

is NLG metrics. The evaluation metrics are BLEU [33], ROUGE [34], and CIDEr [35] which 

measure n-gram matching between the ground truth and a generated text. These metrics are very 

popular in machine translation, image captioning, and other NLP tasks. The next subsections 

describe in further detail the NLP metrics. 
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Figure 1 NLG Evaluation System 

NLG metrics were developed for tasks involving natural language in the broader domain, such as 

machine translation, text summarization, or image captioning. These metrics are designed to 

provide a score indicating the similarity between a ground truth (or reference) text and a generated 

(or candidate) text. Additionally, in the general domain, these metrics are crafted to accept one or 

more references per sample to accommodate various ways of rephrasing a sentence while 

preserving the same meaning. All metrics have a scale from 0 (indicating the worst performance) 

to 1 (indicating the best performance), except for CIDEr-D, the robust version of CIDEr, which 

has a range from 0 to 10. The widely adopted Python library for computing these metrics is based 

on the Microsoft COCO Captions Challenge [36]. 

2.2.1. BLEU 

Papineni et al. [33] the Bilingual Evaluation Understudy (BLEU) metric for assessing machine 

translation. BLEU is a precision-based measure that assesses n-gram overlaps between a target 

text and one or more reference texts. BLEU-n, where n represents the size of the n-grams, can be 

computed (e.g., BLEU-1 for unigrams, BLEU-2 for bigrams). In tasks like report generation, 

BLEU-n is commonly calculated with n values ranging from 1 to 4 (Messina et al. [32]). BLEU 

focuses on precision rather than recall, indicating how well the generated report aligns with the 

ground truth but not how much information is accurately captured or omitted. To address this 

limitation, BLEU includes a penalty for concise candidate sentences in its calculation. 

The authors propose calculating a modified n-gram precision 𝑞𝑛 for each value of n, shown in 

equation 2.1, The counters k and l sum over all the samples in the corpus, 𝐶𝑘 and 𝐶𝑙 are candidate 

sentences,𝐶𝑜𝑢𝑛𝑡𝐶𝑙 (m-gram) is the number of times that m-gram appears in the candidate 𝐶𝑙 , 

𝐶𝑜𝑢𝑛𝑡𝐶𝑙 𝑐𝑙𝑖𝑝 𝐺𝑇𝑘
(n-gram) is the number of times n-gram appears in the candidate 𝐶𝑘 and in the 

ground truth 𝐺𝑇𝑙 , clipped to disallow matching the same n-gram multiple times: 

𝑞𝑛  =
Σ𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠 Σ𝑛−𝑔𝑟𝑎𝑚𝜖𝐶𝑘

𝐶𝑜𝑢𝑛𝑡𝑐𝑘 𝑐𝑙𝑖𝑝 𝐺𝑇𝑘
(𝑛 − 𝑔𝑟𝑎𝑚)

Σ𝑙𝜖𝑆𝑎𝑚𝑝𝑙𝑒𝑠 Σ𝑚−𝑔𝑟𝑎𝑚 𝜖 𝐶𝑙
 𝐶𝑜𝑢𝑛𝑡𝐶𝑙

(𝑚 − 𝑔𝑟𝑎𝑚)
 . (2.1) 

To compensate for the precision-only orientation, the calculation includes a penalization for short 

sentences, namely the brevity penalty (BP), shown in the equation below, where r is the length of 

the reference and c is the length of the candidate text: 

𝐵𝑃  = {
𝑒

(1−
𝑟
𝑐

)
,  𝑐≤ 𝑟

1               𝑐>𝑟  . (2.2) 
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Hence, BLEU-N is calculated as the geometric average of the modified precision values up to N, 

weighted by custom 𝑤𝑛 factors. Typically, 𝑤𝑛 are uniform (e.g., 𝑤𝑛 = 0.25 for N = 4). 

𝐵𝐿𝐸𝑈 − 𝑁  =  𝐵𝑃 .  𝑒𝑥𝑝  ( ∑ 𝑤𝑛

𝑁

𝑛 = 1

  log 𝑝𝑛)   . (2.3) 

2.2.2. ROUGE 

Lin [34] introduced the Recall-Oriented Understudy for Gisting Evaluation (ROUGE), a suite of 

metrics designed for assessing text similarity in text summarization. These metrics include 

ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. In the context of medical report generation, 

many studies prefer using the ROUGE-L metric (Messina et al. [32]). ROUGE-L is based on 

evaluating the longest common sub-sequence between the generated and ground truth texts. It 

incorporates a hyperparameter that allows the metric to be biased towards precision, recall, or an 

average of both (F-score). In practical terms, the score tends to slightly favor recall in the coco-

caption package. 

Let us consider a generated text to be a sequence of words 𝐺𝑒𝑛  =  𝑤1 𝑤2 … …  𝑤𝑛  and a ground 

truth text to be a sequence 𝐺𝑇  =  𝑟1 𝑟2  … …  𝑟𝑚. As a reminder, by a definition sequence is a 

subsequence of 𝑌  = 𝑦1 … … . .  𝑦𝑀if all its elements 𝑥𝑖 appear in Y in the same order, though there 

may be other elements 𝑦𝑗 in between. Then, let 𝐿𝐶𝑆(𝐺𝑒𝑛,  𝐺𝑇) be the length of the longest common 

subsequence between 𝐺𝑒𝑛 and 𝐺𝑇 . Intuitively, if 𝐺𝑒𝑛  is more like 𝐺𝑇 , the longer the longest 

common subsequence found will be. Hence, a notion of recall(𝑅𝑙𝑐𝑠) and precision (𝑃𝑙𝑐𝑠) can be 

compared: 

𝑅𝑙𝑐𝑠  =
𝐿𝐶𝑆(𝐺𝑒𝑛, 𝐺𝑇)

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑇)
  𝑎𝑛𝑑 (2.4) 

𝑃𝑙𝑐𝑠  =
𝐿𝐶𝑆(𝐺𝑒𝑛, 𝐺𝑇)

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑒𝑛)
  . (2.5) 

Thus, ROUGE-L is calculated as a harmonic average between the two measures (F-score), 

Using a hyper-parameter 𝛽 . 

𝑅𝑂𝑈𝐺𝐸 − 𝐿  =  
(1 + 𝛽2). 𝑅𝑙𝑐𝑠. 𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠
   . (2.6) 

If 𝛽  = 1 , the 𝐹𝑙𝑐𝑠 is exactly F-1 score; if 𝛽  =  0  is the precision, and if 𝛽  → ∞ it approximates 

the recall. In practice, 𝛽  is set to 1.2 in the coco-caption package. 

2.2.3. CIDEr 

Vedantam et al [35] introduced Consensus-based Image Description Evaluation (CIDEr) as a 

metric tailored for image captioning. CIDEr characterizes each sentence through a Term 

Frequency-Inverse Document Frequency (TF-IDF) score across its n-grams. The TF component 

emphasizes the presence of each n-gram in the sentence, while the IDF component assigns greater 
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importance to rarer n-grams in the dataset, assuming they convey more valuable information. The 

similarity between two sentences is determined by the similarity of their TF-IDF representations, 

with the authors asserting that this approach captures both precision and recall, preserving 

grammatical and semantic aspects across multiple n values. The authors also introduced CIDEr-

D; a variant less susceptible to gaming effects. The original CIDEr ranges from 0 (indicating the 

worst performance) to 1 (indicating the best), while CIDEr-D ranges from 0 to 10. In the context 

of the report generation task, many authors do not explicitly specify the variant used (Messina et 

al. [32]), but the implementation in coco-caption defaults to CIDEr-D. 

To compute the TF-IDF score for a given sentence 𝑠 and an n-gram 𝑘, the process is as follows. 

In simple terms, the TF term quantifies how frequently the n-gram 𝑘 occurs in 𝑠 relative to all the 

n-grams in 𝑠. Conversely, the IDF term gauges the inverse of the frequency of the n-gram 𝑘 across 

the entire dataset. Therefore, the TF-IDF score, denoted as 𝑔𝑘(𝑠) , is approximately determined as 

follows: 

𝑔𝑘(𝑠)  =  𝑇𝐹 .  𝐼𝐷𝐹   , (2.7) 

𝑔𝑘(𝑠)  =  
# 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠 𝑘 𝑖𝑛 𝑠 

# 𝑎𝑝𝑝𝑒𝑟𝑎𝑛𝑐𝑒𝑠 𝑎𝑛𝑦 𝑛 − 𝑔𝑟𝑎𝑚 𝑖𝑛 𝑠
. log (

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒

#𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠 𝑘 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
)  . (2.8) 

𝑔𝑘(𝑠)  =  
ℎ𝑘(𝑠)

 Σ𝑙𝜖𝑛−𝑔𝑟𝑎𝑚𝑠ℎ𝑙(𝑠)
.   log (

#𝐼𝑚𝑎𝑔𝑒𝑠

Σ𝑖𝜖𝐼𝑚𝑎𝑔𝑒𝑠Σ𝑞=1
𝑚 ℎ𝑘(𝐺𝑇𝑖𝑞)

)  , (2.9) 

where ℎ𝑦(𝑥) represents the frequency of the n-gram 𝑦  in the sentence 𝑥 , and 𝐺𝑇𝑖𝑞 for 

𝑞𝜖{1, … . . , 𝑚} denotes the 𝑚  ground truth sentences for the image 𝑖3. Subsequently, for all 

existing n-grams 𝑘1, 𝑘2, … . . , 𝑘𝑀 ,, a vector 𝑔→𝑛(𝑠) is created for each sentence 𝑠 , with each 

position containing the TF-IDF score for the respective n-gram 𝑘1,  𝑘2, … … , 𝑘𝑀. Finally, the 

similarity between two sentences is computed as the cosine similarity between their vectors, using 

the equation 2.10 for a specific 𝑛  and equation 2.11 for averaging up to N-grams.  

𝐶𝐼𝐷𝐸𝑟𝑛(𝐺𝑒𝑛𝑖 , 𝐺𝑇𝑖) =
1

𝑚
∑

𝑔→𝑛(𝐺𝑒𝑛𝑖). 𝑔→𝑛(𝐺𝑇𝑖𝑗)

||𝑔→𝑛(𝐺𝑒𝑛𝑖)|| ||𝑔→𝑛(𝐺𝑇𝑖𝑗)||

𝑚

𝑗=1

   . (2.10) 

𝐶𝐼𝐷𝐸𝑟(𝐺𝑒𝑛𝑖 , 𝐺𝑇𝑖) = ∑ 𝑤𝑛

𝑁

𝑛=1

𝐶𝐼𝐷𝐸𝑟𝑛(𝐺𝑒𝑛𝑖 , 𝐺𝑇𝑖)    . (2.11) 

Typically, 𝑁 is set to 4, with uniform weights 𝑤𝑖 = 0.25 

Finally, the authors introduced the CIDEr-D variant, which is designed to be more resilient against 

gaming effects. This is achieved by incorporating a penalty for differences in sentence lengths and 

employing a more robust counting mechanism that restricts the matching of the same n-gram 

multiple times. 
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2.3. Summary 

This chapter addresses the related works from image captioning due to the need for longer and 

pattern-rich outputs. Various approaches are explored in related works, such as attention 

mechanisms, multimodal networks, and hierarchical encoder-decoder designs. Noteworthy 

examples include contrastive attention for chest X-ray reports and DL systems for annotating 

medical images. Evaluation metrics, primarily from the Natural Language Processing domain, 

include BLEU, ROUGE, and CIDEr, emphasizing text quality measures. BLEU assesses n-gram 

overlaps with penalties for conciseness, while ROUGE considers the longest common 

subsequence. CIDEr introduces TF-IDF scores for capturing precision and recall aspects. The 

paper provides a comprehensive overview of methodologies and evaluation metrics, shedding light 

on the intricacies of radiology report generation. 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 3 

3. Dataset 
 

3.1. Dataset collection 

Chest X-ray dataset collection for detecting abnormalities was not trivial but the collection of X-

ray images with their respective textual form of report was important for us. There were limited 

sources of dataset that were available publicly. The Indiana University Chest X-ray dataset has 

emerged as a cornerstone in the realm of medical report generation, as highlighted in the work by 

Demner-Fushman et al. [37]. This openly accessible data set comprises pairs of chest X-rays 

coupled with their corresponding semi-structured textual radiology reports. Importantly, it is freely 

accessible on the web, with no additional prerequisites for downloading. Users have the flexibility 

to choose between obtaining the reports alone or opting for the images, available in either PNG or 

DICOM format. This flexibility enhances the utility of the dataset, catering to diverse research 

needs in the medical imaging domain. 

3.2. Dataset description 

•  Image Dataset: It consists of 7470 pairs of image dataset having both frontal and lateral 

images respectively. The image dataset consists of both normal and abnormal chest X-rays. 

Basically, there are fourteen types of thoracic pathologies present in the dataset namely 

Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, 

Effusion, Pneumonia, Pleural Thickening, Cardiomegaly, Nodule, Mass and Hernia. 

• Textual Dataset: A Textual Dataset basically is a radiological report that consists of distinct 

sections - Indication, Findings, and Impression. There were about 3995 reports out of 

which 1525 (38%) of the reports were normal and the remaining 2470 reports represent 

abnormal findings and diagnoses. 
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Figure 2 Sample chest radiograph dataset with its respective findings and impressions 

The dataset diversity in terms of normal and pathological findings, paired imagery, and reports, as 

well as textual sections provide rich annotated data for developing and evaluating models for 

abnormality detection and report generation. However, larger datasets from multiple institutions 

could further improve model robustness. Overall, the current dataset provides a good foundation 

for research despite limited public availability of such medical data pairs. 

3.3. Summary 

This section discusses datasets used for abnormality detection and report generation in chest X-

ray images is primarily sourced from the publicly available Indiana University Chest X-ray dataset, 

widely acknowledged in the field. Comprising 7470 pairs of frontal and lateral images, the dataset 

includes both normal and abnormal X-rays featuring fourteen thoracic pathologies. The textual 

component consists of 3995 radiology reports, with 38% being normal and the remainder detailing 

abnormal findings and diagnoses. Each report encompasses distinct sections—Indication, 

Findings, and Impression. Despite its richness in annotated data, the study notes the potential for 

enhanced model robustness with larger dataset from diverse institutions. Nonetheless, the existing 

dataset forms a solid foundation for research in abnormality detection and report generation, 

addressing the challenges posed by limited public availability of comprehensive medical data 

pairs. 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 4 

4. Deep learning, encoder-decoder architecture, visual 

attention 
 

4.1. Deep learning 

4.1.1. Perceptron 

In 1957, Frank Rosenblatt introduced Perceptron [38]. Depending on the original MCP neuron, 

perceptron learning rule was created. It is a supervised learning technique for binary classification. 

It allows neurons to learn and process individual components in training sets. It is the simplest 

form of a single layer fully connected neural network. 

Perceptron is an algorithm for learning binary classifier which is also a mathematical model of a 

biological neuron. While in actual neurons the dendrite receives electrical signals from the axons 

of other neurons, in perceptron these electrical signals are represented as numerical values. At the 

synapses, the electrical signals are modulated in various amounts which is also modeled in the 

perceptron using weights. Actual neuron fires only when total input crosses a certain threshold 

which is modeled using a threshold function in our case activation function. The model maps 

multiple values of input into one output either belonging to some class or not. Perception is the 

basic building block of a neural network. The mathematical formula for the perceptron expanded 

as: 

𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(Σ𝑖(𝑤𝑖 ⋅ 𝑥𝑖) + 𝑏) , (4.7) 

where, 

• 𝑥𝑖 represents input features.  

• 𝑤𝑖 represents corresponding weights, 

•  𝑏 is the bias term, 

•   Σ𝑖(𝑤𝑖. 𝑥𝑖)represents the weighted sum of inputs plus the bias. 

•  𝑎𝑐𝑡𝑖𝑣𝑎𝑖𝑜𝑛(. )is the activation function. 

Now, in a fully connected layer of a neural network, each neuron in the layer is connected to every 

neuron in the previous layer. The output of each neuron in the fully connected layer is calculated 

in a similar way to perceptron, considering all the inputs from previous layer, their respective 
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weights, and a bias term. There are multiple neurons in fully connected layer, each with its own 

set of weights and biases. In summary, a perceptron can be viewed as a single-neuron fully 

connected layer, and a fully connected layer in a neural network is an extension of perceptron 

concept to multiple neurons.   

 

Figure 3 Perceptron 

The activation function is a crucial component of the perceptron. It introduces non-linearity to the 

model, allowing the perceptron to learn complex relationships in the data. Common activation 

functions include the step function, sigmoid function, or the more widely used rectified linear unit 

(ReLU). 

Perceptron is often arranged into layers to form more complex neural networks. A single-layer 

perceptron is limited in its ability to solve complex problems because it can only learn linear 

decision boundaries. However, stacking multiple perceptron in layers and introducing non-linear 

activation functions allows neural networks to learn and approximate more intricate functions. 

The perceptron model and its subsequent extensions laid the foundation for the development of 

more advanced neural network architectures, such as multilayer perceptron (MLPs) and deep 

neural networks (DNNs). The ability of these networks to learn hierarchical representations makes 

them powerful tools in various machine learning tasks, including image and speech recognition, 

natural language processing, and more. 

4.1.2. Activation function 

The activation function [39] serves as a crucial element in neural networks, determining the output 

of a node based on its inputs and associated weights. When tackling complex problems, the 

utilization of a nonlinear activation function becomes essential. In essence, this function evaluates 

the weighted sum of inputs, incorporating bias, and decides whether a neuron should be activated. 

The primary role of the activation function is to introduce non-linearity into the neuron's output. 

Broadly, activation functions can be categorized into two main types: Linear Activation Functions 

and Nonlinear Activation Functions. This distinction plays a pivotal role in enabling neural 

networks to learn and model intricate patterns and relationships within data, extending their 

capabilities beyond linear mappings. 
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Linear activation function 

The linear activation function calculates the output as a simple linear combination of the inputs 

and weights. Mathematically, it can be represented as: 

 𝑓 (𝑥)  = 𝑎𝑥 + 𝑏, (4.1) 

where 𝑎 is the weight, 𝑥 is the input, and 𝑏 is the bias term. 

The key attribute of a linear activation function is that it produces a linear relationship between 

inputs and outputs. This means that the network can only learn linear mappings from input to 

output, and stacking multiple layers of linear activations would not provide any additional 

modeling capability. 

 

Figure 4 Linear function plot 

Nonlinear activation function 

Nonlinear activation functions introduce nonlinearity into the network, enabling it to learn and 

approximate more intricate relationships in the data. It makes it easy for the model to generalize 

or adapt with a variety of data and to differentiate between the output. The Nonlinear Activation 

Functions are divided based on their range or curves. The basic plot for nonlinear function is shown 

below: 
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Figure 5 Nonlinear function plot 

Popular nonlinear activation functions include: 

Sigmoid or logistic activation function  

This function squashes input values between 0 and 1, making it useful for binary classification 

problems. It is mathematically expressed as: 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
  . (4.2) 

The sigmoid function [40] curve looks like an S-shape. This function is differentiable which means 

we can find the slope of the sigmoid curve of any two points where z is the input function. The 

logistic sigmoid function can cause a neural network to get stuck at the training time. 

 

Figure 6 Sigmoid function plot 
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Hyperbolic tangent activation function or tanh function 

The hyperbolic function [41] shares similarities with the sigmoid function. However, unlike the 

sigmoid output range restricted between 0 and 1, the hyperbolic tangent function spans from -1 to 

1. While this may not precisely mirror the behavior of neurons in the brain, the hyperbolic tangent 

function tends to offer advantages over the sigmoid, particularly in the training of neural networks. 

The equation for the hyperbolic tangent (tanh) function is: 

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
=

1 − 𝑒−2𝑧

1 + 𝑒−2𝑧
   . (4.3) 

This equation 4.3 represents how the hyperbolic tangent function transforms the input 𝑧 to an 

output within the range of -1 to 1. We can use this function in neural networks as an activation 

function to introduce non-linearity and handle a broader range of input values. 

 

Figure 7 Tanh function plot 

In comparison to the sigmoid function, which can sometimes lead to training difficulties when 

inputs are strongly negative and keep the output near zero, the hyperbolic tangent's range from -1 

to 1 allows it to handle negative inputs more effectively. This broader output range helps prevent 

the issue of neural networks getting "stuck" during training, providing a smoother learning process. 

The hyperbolic tangent function is a popular choice as an activation function in neural networks 

due to its improved ability to capture and learn from a wider range of input values, contributing to 

more robust and effective training outcomes. 

Rectified Linear Unit (ReLU) 

The Rectified Linear Unit (ReLU) [42] is indeed one of the most widely used activation functions 

in deep learning, known for its efficiency and simplicity. ReLU introduces non-linearity to the 

model, allowing it to learn and approximate complex relationships in the data. It is considered 

biologically plausible, mimicking the firing behavior of neurons in the human brain. 
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The ReLU activation function is defined as: 

𝑅𝑒𝑙𝑢(𝑧) = max(0, 𝑧)   . (4.4) 

This function outputs the input value z if it is positive and zero otherwise. The simplicity of ReLU 

makes it computationally efficient, and its ability to produce sparse activations (zero for negative 

inputs) contributes to the model's capacity to learn robust representations. 

One of the significant advantages of ReLU is that it avoids issues like the vanishing gradient 

problem encountered by traditional activation functions, such as sigmoid or hyperbolic tangent, 

which tend to saturate for extreme values. ReLU allows for faster convergence during training, as 

it does not saturate for positive inputs. 

 

Figure 8 ReLU function plot 

The graphical representation of ReLU typically shows a piecewise linear function, where the 

output is zero for negative inputs and follows a linear slope for positive inputs. This simplicity 

facilitates gradient-based optimization and makes ReLU well-suited for deep neural networks. 

However, it's worth noting that ReLU is not without its challenges. The "dying ReLU" problem 

may occur when neurons become inactive (outputting zero) for all inputs during training, leading 

to dead pathways in the network. Variations like Leaky ReLU or Parametric ReLU aim to address 

this issue by allowing a small, non-zero output for negative inputs. 

Exponential Linear Unit (ELU) 

The Exponential Linear Unit (ELU) [43] is an activation function that shares similarities with the 

Rectified Linear Unit (ReLU) but introduces a smooth transition for negative input values. The 

primary motivation behind ELU is to mitigate some of the limitations associated with ReLU, such 
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as the "dying ReLU" problem where neurons can become inactive for certain inputs during 

training. 

The ELU activation function is defined as: 

𝑓 (𝑧)  = {  𝛼(𝑒𝑧−1),  𝑖𝑓 𝑧<0
𝑧,              𝑖𝑓 𝑧≥0 

    , (4.5) 

where 𝛼 is a small positive constant. When z is non-negative, ELU behaves like the identity 

function, allowing positive value to pass through unchanged. For negative values of z, ELU 

smoothly transitions, avoiding the abrupt cutoff at zero seen in ReLU. 

 

Figure 9 ELU function plot 

SoftMax function 

The SoftMax function [44] is especially used in the output layer of neural network models dealing 

with multi-class classification problems. It transforms a vector of real numbers into a probability 

distribution, where the probability of each class is proportional to the exponentiated value of that 

class's score relative to the sum of exponentiated scores across all classes. This ensures that the 

output values lie in the range (0, 1) and sum up to 1, making them interpretable as probabilities. 

The mathematical expression for the SoftMax function for a vector 𝑧  =  (𝑧1, 𝑧2, … … . , 𝑧𝑘) of 𝑘 real 

numbers is given by: 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘   ,    (4.6) 

where: 

𝜎(𝑧𝑖) is the i-th component of the Softmax output. 
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𝑒𝑧𝑖 is the exponential of the i-th component of the input vector. 

The denominator ∑ 𝑒𝑧𝑗𝑘
𝑗=1  is the sum of exponentiated values across all components of the input 

vector. 

This function essentially normalizes the input vector into a probability distribution. The larger the 

exponentiated value of a component, the higher its probability in the resulting distribution. The 

SoftMax function is crucial in multi-class classification scenarios where the goal is to assign an 

input to one of several possible classes. The SoftMax function is often used in conjunction with 

the categorical cross-entropy loss function during the training of neural networks for multi-class 

classification tasks. The combination of SoftMax and categorical cross-entropy allows the model 

to learn meaningful representations and make probabilistic predictions across multiple classes. 

4.1.3. Convolutional neural network 

Convolutional Neural Networks (CNNs) [45] represent a specialized class of neural networks 

designed to process and analyze visual data, making them particularly effective in computer vision 

applications. Unlike traditional neural networks, CNNs leverage a unique architecture inspired by 

the visual processing in the human brain, allowing them to automatically learn hierarchical 

representations of features from input images. 

 

Figure 10 Convolutional neural network 

Convolution layer is the core building block of CNNs is the convolutional layer. This layer applies 

convolutional operations to the input data, using filters (also called kernels) to extract local patterns 

and features. This process enables the network to detect simple features like edges and textures in 

the early layers and progressively more complex features in deeper layers. Pooling layers follow 

convolutional layers and serve to reduce the spatial dimensions of the data, making computations 

more efficient and lowering the risk of overfitting. Common pooling operations include max 

pooling, which retains the maximum value in each region, and average pooling, which calculates 

the average. Toward the end of the network, fully connected layers are employed to make 

predictions based on the high-level features learned in the previous layers. These layers connect 
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every neuron to every neuron in the adjacent layers, enabling the network to make complex 

decisions. 

Filters are the small windows applied to input data during convolutional operations. Kernels 

represent the weights associated with these filters. Learning the values of these kernels allows the 

network to automatically extract relevant features from the input. Activation functions, such as 

ReLU (Rectified Linear Unit), introduce non-linearity to the network, enabling it to learn complex 

patterns. ReLU, for example, replaces negative values with zero, facilitating efficient training. 

Striding refers to the step size with which the filter moves across the input during convolution. 

Adjusting the stride affects the spatial dimensions of the output, influencing the receptive field and 

the amount of information retained. 

Convolutional Neural Networks (CNNs) have evolved with various architectures to address 

different tasks and challenges in computer vision. Some of them are AlexNet [46], LeNet-5 [47], 

VGGNet [48], Inception [49], Xception [50], ResNet [51], MobileNet [52], DenseNet [53] and so 

on. Here in our experiment, we have worked on ResNet.  

ResNet 

The ResNet (Residual Network) [51] architecture introduced by Kaiming He et al. has several 

variants, each denoted by the depth of the network. The key idea behind ResNet is the use of 

residual blocks, which contain shortcut connections (skip connections) that bypass one or more 

layers, enabling the model to learn residual functions. Here are some notable types of ResNet 

architectures: 

ResNet-18 is a relatively shallow variant of the architecture. It consists of 18 weight layers, 

including convolutional layers, pooling layers, fully connected layers, and skip connections. 

ResNet-18 is often used for tasks where computational resources are limited. 

ResNet-50 is a deeper variant that gained attention for winning the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [54] in 2015. It includes 50 weight layers and introduces 

bottleneck blocks, which use 1x1 convolutions to reduce the number of parameters and 

computational complexity. 

Resnet-101 is an extension of ResNet-50, featuring 101 weight layers. It provides a deeper 

architecture, allowing for more complex feature learning. ResNet-101 is often preferred for tasks 

that demand a higher level of representation. 

Wide ResNet introduces width as a factor in addition to depth. Wider networks, such as WRN-50-

2, have more filters in each layer, promoting feature diversity. The "2" in WRN-50-2 indicates that 

the width factor is 2. Wide ResNets aim to achieve better performance by increasing model width. 

ResNet-PreAct modifies the original ResNet architecture by incorporating batch normalization and 

ReLU before each convolution operation rather than after. This adjustment helps with the training 

of very deep networks by mitigating issues like vanishing or exploding gradients. 

ResNeXt is an extension of ResNet that introduces a cardinality parameter, representing the 

number of independent paths within a group. This modification enhances the expressive power of 
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the network. ResNeXt architectures, such as ResNeXt-50, offer competitive accuracy with 

improved efficiency. 

ResNet-152 is one of the deepest variants within the original ResNet architecture family. 

Introduced by He, et al. [51], ResNet-152 is characterized by its exceptional depth, consisting of 

152 weight layers. This depth allows the network to capture intricate and hierarchical features, 

making it well-suited for demanding computer vision tasks where a high level of representation is 

crucial.  

 

Figure 11 ResNet152 Architecture 

The primary distinction of ResNet-152 lies in its depth. With 152 weight layers, including 

convolutional layers, residual blocks, pooling layers, and fully connected layers, it can 

automatically learn and represent highly complex patterns and features in input data. ResNet-152 

utilizes residual blocks as its fundamental building units. Each residual block contains skip 

connections (shortcut connections) that allow the gradient to flow more efficiently during 

backpropagation. This mitigates the vanishing gradient problem, enabling the successful training 

of very deep networks. Like other deep ResNet variants, ResNet-152 adopts a bottleneck 

architecture in its residual blocks. This involves the use of 1x1 convolutions to reduce the number 

of parameters and computational load, allowing the network to maintain efficiency despite its 

depth. ResNet-152 was trained on the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) dataset, demonstrating its ability to achieve state-of-the-art performance in image 

classification tasks. The network excels in recognizing and categorizing objects within images 

across a wide range of classes. Due to its pre-trained weights on ImageNet, ResNet-152 is often 

used as a base model for transfer learning. Transfer learning involves fine-tuning the model on a 

specific task with a smaller data set. This is particularly useful when working with limited labeled 

data for a specialized application. 

4.1.4. Recurrent neural network 

Recurrent Neural Networks (RNNs) [55] are a class of neural networks designed to handle 

sequential data by capturing dependencies and patterns over time. Unlike traditional feedforward 
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neural networks, RNNs possess internal memory, allowing them to maintain a state representation 

that evolves as new inputs are processed. This unique architecture makes RNNs particularly 

effective for tasks involving sequences, such as time series prediction, natural language processing, 

and speech recognition. Since we are trying to generate reports from sequence of tokens this neural 

network model should perform better than previous dense feed forward model. Unlike the 

feedforward model, these neural networks can use their internal state to process the sequences of 

inputs because of which they have been used in Language Modeling, Machine Translation, Speech 

Recognition, and various other tasks. But because of two major problems in RNN model called 

vanishing and exploding gradients problem we use LSTM [56] model for training the classifier as 

LSTM model uses forget gates to decide when to forget and remember information for long periods 

of time. 

 

Figure 12 Standard RNN network 

Long Short-Term Memory (LSTM) 

LSTM [56] are a special kind of RNN, capable of learning long term dependencies. They were 

introduced by Hochreiter and Schmidhuber in 1997 and were refined and popularized by many 

people. They work tremendously well on a large variety of problems and are now widely used. All 

recurrent neural networks have the form of a chain of repeating modules of neural network. In 

standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer. 

The LSTM’s also have a chain like structure, but repeating modules have different structures as 

shown in Figure 13: 

 

Figure 13 LSTM architecture 
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The above shown LSTM cells are good at remembering the data is because they can choose to 

either remember or forger the data based on the weights of the network. This feature of this network 

helps to tackle the major problem of general RNN’s. 

 

4.2. Encoder-decoder architecture 

Deep Learning (DL) [57] model as an encoder-decoder architecture with an attention mechanism 

is a sophisticated approach within artificial intelligence. This architecture is widely used in tasks 

involving sequence-to-sequence transformations, including machine translation and image 

captioning. The encoder component handles the processing of input data, often in the form of 

sequential data like sentences or images and generates a concise representation that captures the 

essential features. In contrast, the decoder uses this representation to gradually produce the desired 

output sequence. The integration of an attention mechanism further strengthens the model's 

capacity to selectively concentrate on specific parts of the input sequence during the decoding 

process. 

Encoder plays a vital role in deep learning applications, as it is responsible for transforming the 

data from source into a format that can be easily understood by machines. Utilizing neural network 

structures, this crucial component extracts significant features and representations from source 

data. A commonly used and highly effective method is the Convolutional Neural Network (CNN) 

[45] for images and Long Short-Term Memory (LSTM) [56] for text data sources. 

 

Figure 14 Encoder decoder architecture 

 CNN processes images through multiple layers of convolution and pooling, enabling the capture 

of hierarchical features. These learned representations, presented in the form of vectors or tensors, 

offer a compact and semantic encoding of the original image, and greatly enhance the performance 

of downstream tasks such as image classification, object detection, and image generation. In 

essence, image encoders serve as a vital bridge between the visual world and machine 

understanding. Here in our experiment, the image encoder compromises the CNN model which is 

used to extract global and local visual features. 
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Whereas, LSTMs, designed to capture sequential dependencies, process input sentences token by 

token, updating hidden states at each step. The final hidden state encapsulates the comprehensive 

information from the entire sentence, presenting a distilled and contextual encoding. In our 

experiment, the sentence encoder utilizes LSTM, acting as a powerful tool to understand and 

represent the sequential nuances within the text. This encoding is invaluable for various natural 

language processing tasks, including sentiment analysis, text classification, and language 

generation, effectively bridging the semantic understanding of sentences for downstream 

applications in our model.   

The sentence decoder processes the encoded information, often in the form of a fixed-dimensional 

vector or tensor, to produce a sequential output. A common choice for the decoding component is 

recurrent neural networks (RNNs) [55] or, more recently, attention-based mechanisms and 

transformer architectures. For example: in a model with Long Short-Term Memory (LSTM) 

decoders, the decoder processes the encoded sentence representation and generates the output 

sequence step by step. At each decoding step, the LSTM considers the previously generated tokens 

and their own internal state, producing the next token in the sequence. The process continues 

iteratively until the entire output sequence is generated. 

Also, incorporating attention mechanisms in the decoder enhances its ability to selectively focus 

on different parts of the encoded input, allowing the model to align its attention with relevant 

information during the generation process. This is particularly useful for handling long sentences 

or sequences where certain parts require more emphasis. 

4.3. Visual attention 

Attention mechanisms have become a core component of many state-of-the-art deep learning 

models, especially in natural language processing and computer vision tasks. Attention allows 

models to selectively focus on parts of a large input that are most relevant to the task being 

performed. This contrasts with encoding the entire input into a single fixed-length vector, which 

can lose important details. 

For example, in neural machine translation, attention allows the model to dynamically attend to 

certain words in the source sentence when generating each word in the target sentence. This 

provides proper context for the model to translate words appropriately based on the full source 

sentence, rather than relying solely on a fixed encoding. 

Here in our case, the core idea behind attention is to compute relevance scores between elements 

of one modality (e.g., words in a sentence) and elements of another modality (e.g., regions in an 

image). This allows the model to dynamically attend to inputs that are pertinent to generating the 

output, as opposed to relying solely on fixed encodings. 
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Figure 15 Example showing attention. (Source: https://theaisummer.com/attention/) 

Formally, consider input vectors {𝑥1,  𝑥2,   …  , 𝑥𝑛} that represent elements of one modality, like 

words in a source sentence. We also have context vectors {ℎ1, ℎ2, … , ℎ𝑚} that encode contextual 

information from the second modality, like the partially generated target sentence. 

First, the input and context elements are projected into a joint embedding space using learned 

projection matrices 𝑊𝑥 and 𝑊ℎ: 

𝑢𝑖 = 𝑊𝑥𝑥𝑖  𝑎𝑛𝑑 (4.8) 

𝑣𝑗 = 𝑊ℎℎ𝑗  . (4.9) 

Then, relevance scores are computed between each input 𝑥𝑖 and context ℎ𝑗  using a scoring function 

𝑓  like dot product: 

𝑒𝑖𝑗 = 𝑓(𝑢𝑖 , 𝑣𝑗)  . (4.10) 

Common choices for 𝑓  are dot product or a small multilayer perceptron. The scores are normalized 

using a SoftMax to get attention probabilities: 

𝑎𝑖𝑗 = exp(𝑒𝑖𝑗) /Σ𝑘 exp(𝑒𝑖𝑘)   . (4.11) 

These probabilities represent the relevance of each input element to the current context. The 

attended input is a weighted sum of the inputs, with the weights given by the attention probabilities: 

𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 = Σ𝑖𝑎𝑖𝑗 ⋅ 𝑥𝑖   . (4.12) 

So, the most relevant inputs are dynamically amplified while irrelevant ones are suppressed. The 

projections and scoring function are learned via backpropagation during training. 
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Attention mechanisms excel at selectively focusing on pertinent information needed for the task 

based on the context, rather than relying solely on fixed-length encodings. They have led to state-

of-the-art results in machine translation, text summarization, image captioning, and other tasks 

involving sequential data like speech recognition. As models scale to even larger dataset, selective 

attention provides an efficient and flexible approach to handling long, high-dimensional inputs. 

4.3.1. Visual feature 

A core part of image-to-text generation systems involves encoding meaningful visual 

representations from the input images [58]. Typically, CNNs pre-trained on large dataset are used 

to extract visual features. CNNs apply a series of convolutional and pooling layers to transform 

the raw image pixels into higher-level feature representations. Lower layers detect basic visual 

concepts like edges and textures. Higher layers encode more complex semantics related to full 

objects and scenes. Global and Local are two types of visual features which can be extracted from 

CNNs. 

Global features provide a holistic representation of the entire image. Features from the final CNN 

layer summarize the full semantic content in a single vector. However, spatial information is 

discarded. 

Local features retain spatial localization by extracting patches or region vectors from intermediate 

CNN layers. This provides a grid of local feature vectors, each encoding information about a part 

of the image.  

Combining global and local features allows models to leverage both holistic scene understanding 

and fine-grained spatial details. The global representation captures high-level concepts, while local 

features focus on spatial areas relevant to generating coherent output like captions. Attention 

mechanisms are often applied over the local feature grid to emphasize image regions dynamically 

based on context from the textual modality. For instance, generating the word "dog" in a caption 

may highlight local features corresponding to the dog's location. This allows contextual, spatially 

aware focusing during multimodal output generation. Hence, global features summarize whole-

image semantics while local features retain spatial information. CNNs provide an effective means 

to extract both representations, which can be fused in context-aware ways to generate coherent 

multimodal outputs. The global-local duality augments visual understanding for downstream 

generation tasks. 
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Figure 16 Visual features 

Here, Local features capture information from specific regions or points in an image. In this case, 

SIFT detects key points (interest points) and computes descriptors that describe the local 

appearance and texture around each key point. These features are invariant to scale changes and 

rotations, making them suitable for various computer vision tasks and the color histogram 

represents the distribution of colors across the entire image. It is a global feature because it 

summarizes information about the entire image without focusing on specific regions or points. 

Color histograms are often used for color-based image retrieval and analysis. 

4.4. Summary 

The section discusses various deep learning techniques for sequence-to-sequence tasks like 

machine translation and image captioning. An effective approach for sequence-to-sequence tasks 

like machine translation and image captioning is an encoder-decoder architecture with attention 

mechanisms. The encoder processes the input and generates a representation while the decoder 

produces the output sequence, using the attention mechanism to focus on relevant input parts. For 

images, CNNs provide global and local hierarchical visual features and RNNs like LSTMs model 

textual sequential dependencies and long-term context. Components like convolutional layers, 

fully connected layers, activation functions and optimization algorithms enable the models to learn 

complex multimodal patterns. When combined in an end-to-end framework, these specialized 

neural modules allow generating coherent outputs reflecting understanding of both modalities, 

such as image captions attending to visual elements based on textual context. The goal is to 

leverage the strengths of diverse deep learning architectures to build integrated systems capable of 

relating and translating between multiple data types, through components like encoders extracting 

representations, decoders generating relevant outputs, and attention focusing on pertinent inputs. 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 5 

5. Multimodal learning and implementation 
 

5.1. Multimodal learning 

5.1.1. Basics 

Within the vast domain of artificial intelligence and machine learning, scientists are investigating 

the merging of data from various sources to build increasingly complex and human-like systems. 

This problem is addressed by multimodal learning, an interdisciplinary field at the nexus of 

computer vision, natural language processing, and audio analysis. Multimodal learning [59] 

enables machines to extract meaningful information from a variety of modalities, including text, 

images, audio, and video. Multimodal learning makes use of the diversity of information streams, 

in contrast to traditional approaches that concentrate on a single modality, to provide a more 

comprehensive comprehension of complicated data. 

 

Figure 17 Multimodal theoretical architecture 

In the quest to develop intelligent systems that can mimic human thought processes, multimodal 

learning has become a viable approach. Humans effortlessly integrate information from various 

senses, blending textual information with visual cues, sounds, and other sensory inputs to form a 

nuanced understanding of their environment. Recognizing the importance of this integrated 
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perception, researchers are turning to multimodal learning to imbue machines with the ability to 

process and interpret information across different modalities. 

The motivation behind embracing multimodal learning is multifaceted. In many practical 

scenarios, information naturally manifests in multiple modalities, necessitating a more 

comprehensive approach to analysis. For instance, understanding an image may be greatly 

enhanced by accompanying textual descriptions, and deciphering spoken language may benefit 

from the inclusion of visual context. Multimodal learning, therefore, addresses the inherent 

complexity of real-world data and presents a means to overcome the limitations of unimodal 

models, offering improvements in performance, robustness, and interpretability. 

5.1.2. Data types 

Multimodal learning involves different types of information, or modalities, working together for a 

more complete understanding. One crucial modality is text, which includes written words and 

linguistic expressions. Natural Language Processing (NLP) helps extract meaning from text, 

making it useful for tasks like sentiment analysis and language translation. Another key modality 

is images, where computer vision algorithms analyze visual data for tasks such as image 

recognition and captioning. Audio is a modality focused on sound and speech, used in tasks like 

speech recognition and emotion detection. Videos, with both spatial and temporal features, form 

another modality, aiding in tasks like action recognition and video captioning. Combining these 

modalities enhances the overall interpretation of information, allowing models to grasp diverse 

aspects and gain a more comprehensive understanding of content. 

 

Figure 18 Example of different modalities 

5.1.3. Application 

The key applications include image and text captioning, enhancing content accessibility and 

assistive technologies. Speech processing benefits from multimodal learning in tasks like accurate 

speech-to-text transcription and natural text-to-speech synthesis. Video analysis, incorporating 

spatial and temporal features, supports tasks such as action recognition, event detection, and 

summarization, applicable in surveillance and sports analysis. In healthcare, multimodal learning 

aids comprehensive diagnostics by integrating medical images, patient records, and clinical notes. 

Human-computer interaction is shaped by multimodal interfaces, offering natural user experiences 

in virtual assistants, augmented reality, and education. Social media analysis benefits from 

extracting insights across text, images, and videos, enabling sentiment analysis, content 

recommendation, and trend detection. These diverse applications highlight the transformative 

impact of multimodal learning across multiple domains. 
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5.1.4. Challenges 

One primary challenge lies in the heterogeneity of modalities, as text, images, audio, and video 

inherently differ in data structures and representations. Harmonizing these modalities for effective 

information fusion poses a non-trivial task. Integrating information from multiple modalities 

requires addressing challenges in data fusion and alignment, particularly when dealing with 

unstructured data such as images and text. The scarcity of labeled multimodal data, especially in 

specialized domains like medical imaging, hinders robust model training. Intermodal variability, 

where different modalities may describe the same concept variably, and the inherent complexity 

of multimodal learning models, especially in terms of scalability and ethical considerations, further 

underscore the challenges faced by practitioners in unlocking the full potential of multimodal 

approaches to AI and machine learning. Developing standardized benchmarks for fair comparison 

and defining appropriate evaluation metrics are ongoing efforts within the research community to 

address the diversity of tasks and modalities in multimodal learning. 

5.2. Implementation 

 

Figure 19 Schema of proposed model 

Figure 19 illustrates the entire architecture of our system, which receives medical images from 

multiple perspectives as input and produces a radiology report with impressions and findings. We 

use an encoder-decoder model, which accepts an image pair as input and outputs the first phrase, 

to create the findings paragraph. The semantic representation of the first sentence is then generated 

by processing it through a sentence encoding network. Subsequently, a multimodal recurrent 

generation network is employed to generate the next sentence by combining the visual features of 

the image with the semantic features of the previous sentence. Until the model produces the last 

sentence in the paragraph, this iterative procedure is carried out. 
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5.2.1. Image encoder 

We begin a procedure for image processing using a pre-trained ResNet-152 model as an image 

encoder. The process starts by resizing all input frontal images to a consistent size of 256 × 256 

pixels, followed by cropping them to 224 × 224 pixels to meet the input requirements of the 

ResNet-152 architecture. The key objective is to extract both local and global visual details from 

the images. For local feature extraction, the script focuses on the "res4b35" layer of the ResNet-

152 model, resulting in a local feature matrix denoted as f in R1024x1.96. This matrix is derived from 

196 sub-regions, each corresponding to a regional feature vector, effectively dividing the image 

into smaller components. Simultaneously, a global feature vector (f in R2048) is obtained from the 

last average pooling layer of ResNet-152, providing a comprehensive representation of the entire 

image. 

During the training phase, a notable aspect is that all parameters in the layers generated from the 

ResNet-152 architecture remain constant. This approach, known as feature extraction, involves 

using the pre-trained model as a fixed feature extractor. By keeping these parameters unchanged, 

the script maximizes computing efficiency, as training a large model like ResNet-152 from scratch 

can be computationally intensive. The decision to use pre-trained weights ensures that the model 

benefits from the knowledge acquired during its initial training on a diverse dataset, enhancing its 

ability to extract meaningful features from the input frontal images. Overall, the script underscores 

the practical considerations of leveraging a pre-trained deep learning model for efficient image 

processing while balancing the extraction of both local and global features. 

5.2.2. Sentence and paragraph generation model 

In the findings section's introductory sentence, we encapsulate crucial information pertaining to 

the image, and to enhance this process, we've developed a dedicated sentence generation model. 

This model is designed to consider the global features, which are acquired through the image 

encoder. These specialized models are meticulously trained with a specific emphasis on generating 

expressive impressions. For the initiation of sentence generation, findings are employed as the 

initialization for a recurrent model, as detailed in Equation 2. In this context, a single-layer Long 

Short-Term Memory (LSTM) network is utilized for sentence decoding. To kickstart the sentence-

creation process, the LSTM's initial hidden states and cell states are set to zero. An intriguing 

aspect of our approach lies in our ability to anticipate the first word of the sentence by utilizing the 

visual feature vector as the initial input for the LSTM. Subsequently, the entire sentence is 

constructed word by word. 

Before inputting data into the LSTM, we employ a fully connected layer to transform the visual 

feature vector, ensuring its dimensionality aligns with that of the word embeddings. Throughout 

our research, the sizes of the word embeddings and hidden states are fixed at 512 and 1024, 

respectively, for every LSTM module employed. As highlighted earlier, our paragraph generation 

algorithm operates by generating results sentence by phrase, utilizing both sentence and image 

attributes as input. This comprehensive approach involves two primary components, emphasizing 

the integration of visual information with the semantic richness derived from the sentence 

generation model. The synergy between the image encoder and the LSTM-based sentence 
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generation model forms a robust foundation for generating detailed and contextually rich 

descriptions based on the visual content. 

Let us assume that we are generating paragraphs of findings that contain P sentences. The 

probability of generating k-th sentence with length L satisfies and the probability of the sequence 

of words 𝑊𝑖 = (𝑠1, 𝑠2, … , 𝑠𝐿) given the context 𝑄  and parameters 𝛼is calculated as: 

𝑃(𝑊𝑖 = (𝑠1, 𝑠2, … , 𝑠𝐿)|𝑄; 𝛼) = 𝑃(𝑊1|𝑄) ∏ 𝑃(𝑊𝑖|𝑄, 𝑊1, … , 𝑊𝑖−1)

𝑘−1

𝑖=2

 

𝑃(𝑠1|𝑄, 𝑊𝑘−1) ∏ 𝑃(𝑠𝑡|𝑄, 𝑊𝑘−1, 𝑠1, … , 𝑠𝑡−1) 

𝐿

𝑡=2

, (6.1) 

 

where Q represents the provided medical image, while α denotes the model parameter. Wi 

represents the ith sentence, and st represents the tth token within that sentence. We employ a Markov 

assumption for sentence-level generation, akin to the n-gram assumption in language models. 

Specifically, we adopt a "2-gram" model, where the generation of the current sentence depends 

solely on its immediately preceding sentence and the accompanying image. This simplification 

allows us to estimate the probability in a more straightforward manner given as: 

 

𝑃̂(𝑊𝑖 = (𝑠1, 𝑠2, … , 𝑠𝐿)|𝑄; 𝛼) = (𝑃(𝑊1|𝑄)) ∏ 𝑃(𝑊𝑗|𝑄, 𝑊𝑗 − 1)

𝑘−1

𝑗=2

 

 

𝑃(𝑠1|𝑄, 𝑊𝑘−1) ∏ 𝑃(𝑠𝑡|𝑄, 𝑊𝑘−1, 𝑠1, … , 𝑠𝑡−1)

𝐿

𝑡=2

. (6.2) 

 

Our objective is to determine the best parameter values for the Maximum Log-Likelihood 

Estimation (MLE). 

𝑎∗ = argmax𝑎 ∑ log 𝑃̂ (𝑊𝑘 = 𝐷𝑘|𝑄; 𝛼)

𝑃

𝑘=1

, (6.3) 

 

where Dk represents the ground truth for the kth sentence in the findings paragraph. As illustrated 

in Equation 6.2, we break down this equation into three distinct parts, where the first probability 
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function is the first part, the second probability function is the second part and rest of all is third 

part and introduce our model step by step. 

5.2.3. Sentence encoder 

The methodology employed in our approach plays a pivotal role in extracting semantic vectors 

from textual descriptions, enhancing our understanding of the underlying meaning within the 

content. The primary focus lies in distilling meaningful information from textual descriptions to 

enable a more nuanced representation of the content's semantics. For the task of sentence encoding, 

we utilize a 1D Convolutional Neural Network (CNN), specifically tailored to process 512-

dimensional word embeddings. Word embeddings serve as continuous vector representations of 

words, facilitating the neural network's ability to comprehend and analyze sequential data, such as 

sentences. The structure of our sentence encoding CNN comprises three convolutional layers, each 

strategically designed to capture hierarchical features present in the input word embeddings. These 

convolutional layers use filters with a kernel size of three and a stride of one. The kernel size 

defines the filter's dimensions, while the stride determines the step size of the filter as it scans the 

input data. Each convolutional layer produces 1024 feature channels, representing distinct patterns 

or aspects within the input data. To distill meaningful information from these channels, we apply 

a max-pooling operation to the feature maps generated by each layer. This operation results in 

concise 1024-dimensional feature vectors for each layer, encapsulating the most salient features 

from the hierarchical representations. The final sentence feature is derived by concatenating the 

feature vectors obtained from different layers. This approach enables the model to capture and 

leverage a comprehensive set of semantic features extracted from the input text descriptions. In 

essence, our methodology with the 1D CNN, convolutional layers, max-pooling, and 

concatenation forms a robust framework for extracting meaningful semantic vectors from textual 

data. 

5.2.4. Sentence decoder 

It is essential to our model since it uses the previously created sentence as well as local visual data 

as a multimodal input. Its primary function is to generate the next sentence, which encompasses 

the second and third part of equation 6.2. Comprising just a single layer of LSTM, this decoder 

efficiently processes the information. Image V undergoes conversion to become input for this 

LSTM layer. Simultaneously, the encoded representation of the preceding sentence serves as a 

guide for our model to construct the subsequent sentence. This process is iteratively repeated until 

an empty sentence is generated, signaling the conclusion of the paragraph. This meticulous 

approach ensures the coherence and context consistency within the paragraph, aligning with our 

overarching objectives. 

To focus different sentences to different regions of images and learn the relation between 

sentences, sentence-based visual attention model [60] is proposed. To capture the semantic 

features from the previous sentence and the regional visual representations, we employ a two-step 

process. Initially, these inputs are passed through a fully connected layer, followed by a SoftMax 

layer. This operation enables us to obtain an attention [61] distribution across a total of k = 196 
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distinct image regions. In our model, we employ an attention mechanism, denoted as 'a', which is 

formulated as follows: 

𝑏 = 𝑆att tanh(𝑆𝑞𝑞 + 𝑆𝑤𝑤1
𝑖)   , (6.4) 

where 𝑞 𝜖 ℝ𝑎𝑣∗𝑖 represents the regional visual features learned by the image encoder, while 

𝑞 𝜖 ℝ𝑎𝑤  stands for the encoding of the preceding sentence. The parameters𝑆𝑎𝑡𝑡 𝜖 ℝ1∗𝑖, 𝑆𝑣 𝜖 ℝ𝑖∗𝑎𝑣 , 

and𝑆𝑤 𝜖 ℝ𝑖∗𝑑𝑤 are essential components of the attention network. Additionally, 1𝑖  𝜖 ℝ1∗𝑖 is a 

vector composed entirely of ones. Here, 𝑎𝑣
 is designated as 1024, representing the dimensionality 

of the regional visual feature, while 𝑎𝑤 denotes the dimension of the sentence feature. Specifically, 

𝑎𝑤 takes on a value of 2048 for the Bi-LSTM configuration and 3072 for the CNN sentence 

encoder. Subsequently, we proceed to normalize this attention mechanism across all regions to 

obtain the attention distribution. 

𝜃𝑖 =
exp(𝑏𝑖)

Σ𝑖 exp(𝑏𝑖)
  , (6.5) 

where θi represents the attention weight for the ith region, computed using the exponential function 

and normalized by the sum of all exponentials. Finally, the weighted visual representation 'vatt' is 

calculated by aggregating the regional features: 

𝑣att = ∑ 𝜃𝑘

𝑖

𝑘=1

𝑣𝑘 .    (6.6) 

In the sentence decoder, this 𝑣att serves as the input. The attention model dynamically focuses on 

different areas of the image as we construct different sentences, considering the context that the 

sentence before it provides. Our method uses a mechanism to remove parts of the image or features 

that don't relate to the present sentences. This selective process ensures that the model focuses on 

the most pertinent information, reducing the risk of overfitting to the semantic input. 

Adam optimizer trains our model. The learning rate decays by a factor of 0.1 every 10 epochs, 

with the initial learning rate set at 1e-4. For training, the batch size is 32. We implement a teacher-

forcing policy during the training, meaning that we constantly feed our decoder words or sentences 

that are ground truth for the generation in the next time. Greedy search is utilized during testing to 

produce words and sentences in each timestamp. The decoder will receive previously created 

words or sentences as input for the subsequent word or sentence. Until it produces an empty 

sentence, the recurrent generative model will continue to produce sentences. Through collaborative 

end-to-end training, all modules are trained by reducing cross-entropy loss. 

5.3. Summary 

In this chapter we discussed about the basics of multimodal learning, datatypes, application and 

challenges faced while making a multimodal model also this section discusses about the 

methodology for a multimodal learning system is detailed, focusing on the creation of radiology 

reports from medical images. The proposed model employs an encoder-decoder architecture, 
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utilizing a pre-trained ResNet-152 model for image processing and extracting both local and global 

visual details. The paragraph generation model involves a dedicated sentence generation model 

and a recurrent generation network that iteratively combines visual and semantic features to 

generate detailed findings paragraphs. The methodology includes a sentence encoder using a 1D 

Convolutional Neural Network for semantic vector extraction from textual descriptions and a 

sentence decoder, employing a single-layer LSTM and an attention mechanism to focus on 

different regions of images for each sentence. The overall approach ensures coherence and context 

consistency within the generated paragraphs. Training involves teacher-forcing, and the model is 

optimized using the Adam optimizer with a decaying learning rate. The end-to-end training process 

minimizes cross-entropy loss, ultimately producing detailed and contextually rich radiology 

reports from medical images. 
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CHAPTER 1 

CHAPTER 1 

CHAPTER 1 

CHAPTER 6 

6. Experiments 
 

6.1. Setup 

Here we used the Indiana University Chest X-ray dataset [37] along with their reports. We only 

took the frontal images of the chest x-ray and took impression and finding parts of the textual 

report. Since the textual form of the report was in XML format, we did some data preprocessing 

in it. At first, we extracted the impression and findings of the chest x-ray report and split it into 

train, validation set in JSON format. After that, we create a vocabulary for impression and findings. 

Here, we pad each sentence with start and end tokens which are represented as <start> and <end>. 

After all this preprocessing we save a pickle file for vocabulary which is used during the training 

period. 

Our training is based on the Pytorch framework where our model consists of an Image encoder 

known as EncoderCNN, an Impression decoder, a Sentence Encoder, and Attention Decoder. 

Image Encoder compromises ResNet152 pre-trained weights from ImageNet where we extract 

feature vectors from input images. In the impression decoder, we set the hyperparameter and build 

the layer for it. Here visual embedding, word embedding is done with the presence of embedding 

size, vocabulary size, and number of layers including global and local features. Also, here visual 

feature is combined with a semantic sentence vector to get hidden and cell state.  This is the main 

part used for encoding where we get the initial sentence. This part is the Initial sentence generator 

block of our system architecture. After that, we have got a sentence encoder which consists of a 

CNN layer. Here we also set the hyper-parameter and build the layers for the sentence encoder. 

Our Attention decoder model consists of LSTM and a 1D convolution layer. Adam optimizer [62] 

trains our model for 80 epochs. The learning rate decays by a factor of 0.1 every 10 epochs, with 

the initial learning rate set at 1e-4. For training, the batch size is 32. We implement a teacher-

forcing policy during the training, meaning that we constantly feed our decoder words or sentences 

that are ground truth for the generation the next time. Greedy search [63] is utilized during testing 

to produce words and sentences in each timestamp. The decoder will receive previously created 

words or sentences as input for the subsequent word or sentence. Until it produces an empty 

sentence, the recurrent generative model will continue to produce sentences. Through collaborative 

end-to-end training, all modules are trained by reducing cross-entropy loss. The GPU used for the 

training was Volta. It took about three hours to complete the training process. Results were based 

on Natural Language Generation (NLG) Metrics. 
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6.2. Results 

We measured the performance based on BLEU1, BLEU2, BLEU3, BLEU4, ROUGE, and CIDEr 

on three observations: Impression (I), Finding (F), and both Impression and Finding (I+F). The 

best score for BLEU1 (0.4424), BLEU2 (0.2923), BLEU3 (0.207), and BLEU4 (0.1464) was 

achieved when both Impression and Finding was accounted whereas the best ROUGE and CIDEr 

value of 0.5014 and 1.3678, respectively, was observed with Impression only.  

Table 1 Evaluation metrics for Impression, Finding and Impression and finding. 

 BLEU1 BLEU2 BLEU3 BLEU4 ROUGE CIDEr 

Impression (I) 0.266 0.1878 0.1417 0.1066 0.5014 1.3678 

Finding (F) 0.4328 0.2831 0.1962 0.1395 0.317 0.2312 

Both (I + F) 0.4424 0.2923 0.207 0.1464 0.3396 0.2268 

 

6.3. Comparison 

We conducted a comprehensive comparison of our proposed approaches with several 

contemporary models dedicated to medical report creation and image captioning. The models 

encompass a spectrum ranging from advanced state-of-the-art methodologies to simpler baseline 

models. The 1-NN (1-Nearest Neighbor) model involves determining the nearest neighbor in the 

image embedding space of the training set when presented with a test image, and the corresponding 

report of this nearest neighbor is assigned as the result for the test image. Show and Tell (S&T) 

[18], a benchmark method for image captioning, and Show, Attend, and Tell (SA&T) [61], a model 

integrating attention mechanisms to enhance caption generation, were included in the comparison. 

TieNet [25], presumed to offer unique features or methods in the realm of medical report 

generation or image captioning, was also part of the evaluation. Additionally, a reinforcement 

learning-based CNN-RNN-RNN model proposed by Liu, Guanxiong, et al. [64] for automated 

medical report generation was considered in our comparative analysis. The evaluation was 

conducted on the Open-I dataset, employing the same set of evaluation metrics. The results, 

represented by the obtained scores for respective metrics, are presented in the tabulated form below 

for comprehensive assessment. 
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Table 2 Evaluation of generated reports on our testing set using BLEU, ROUGE, and CIDEr NLG 

metrics. We compare our models with five baseline models including a baseline implementation 

of the hierarchical generation reinforcement model. 

Models BLEU1 BLEU2 BLEU3 BLEU4 ROUGE CIDEr 

1-NN 0.232     0.116  0.051  0.018  0.201  0.728 

S&T[18] 0.265      0.157  0.105  0.073  0.306  0.926 

SA&T [25] 0.328       0.195  0.123  0.080  0.313  1.276 

TieNet [25]  0.330     0.194  0.124  0.081  0.311  1.334 

CNN-RNN 

(NLG) [25] 

0.369 0.246 0.171 0.115 0.244 0.036 

Ours (I+F) 0.4424 0.2923 0.207 0.1464 0.3396 0.2268 

 

Our model generates output of findings and impression with image id respectively. Sample output 

is shown in Figure 20. 

 

 

Figure 20 Sample output with ground truth and predicted output 

 



 

40 

 

 

Figure 21 Sample output generated in txt file. 

 

6.4. Discussion 

Here we developed a robust deep learning model for generating medical reports from chest X-ray 

images, utilizing the Indiana University Chest X-ray dataset. Through meticulous preprocessing, 

we extracted impressions and findings from XML-formatted reports, and our model, composed of 

an Image Encoder, Impression Decoder, Sentence Encoder, and Attention Decoder, demonstrated 

efficacy in encoding and decoding relevant information. Training on a Volta GPU using pre-

trained ResNet152 weights from ImageNet, the model optimized cross-entropy loss over 80 epochs 

with an Adam optimizer and employed a teacher-forcing policy during training and a greedy search 

strategy during testing. Comprehensive performance evaluation, utilizing BLEU1-4, ROUGE, and 

CIDEr metrics, revealed superior results when considering both impressions and findings. In a 

comparative analysis against contemporary models, including 1-NN, Show and Tell, Show, 

Attend, and Tell, TieNet, and a reinforcement learning-based CNN-RNN-RNN model, our model 

consistently outperformed across all metrics, affirming its efficacy in medical report generation. 

Sample outputs further illustrated the model's proficiency, emphasizing its potential for accurate 

and contextually relevant medical reporting in clinical applications. 

6.5. Summary 

This section discusses a deep learning model which is developed for medical report generation 

from chest X-ray images, using the Indiana University Chest X-ray dataset. Extensive data 

preprocessing involved extracting impressions and findings from XML-formatted reports and 

creating a vocabulary for the model. The architecture included an Image Encoder (ResNet152), 

Impression Decoder, Sentence Encoder, and Attention Decoder, trained collaboratively over 80 

epochs using PyTorch and an Adam optimizer. The model demonstrated superior performance, 

particularly when considering both impressions and findings, as evaluated by BLEU1-4, ROUGE, 

and CIDEr metrics. Comparative analyses against contemporary models, ranging from simpler 

baselines to advanced methodologies, consistently showcased the model's excellence. Sample 

outputs further demonstrated the model's proficiency in generating accurate and contextually 

relevant medical reports, indicating its potential impact in clinical applications. 
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CHAPTER 7 

7. Conclusion 
 

In this study, our primary objective has been the development of a comprehensive medical 

reporting system, particularly focusing on radiology impressions. The attention-based model we've 

proposed, incorporating multimodal inputs such as text and images, has proven effective in 

generating detailed reports. However, challenges arise in accurately distinguishing abnormal cases, 

potentially due to constraints in our training dataset, particularly the limited samples for abnormal 

cases, and inherent inconsistencies within the original ground truth reports. Furthermore, the model 

encounters difficulty in generating entirely new sentences, indicating the need for a more extensive 

and meticulously annotated dataset, along with innovative training strategies. Addressing these 

limitations requires a focus on keyword accuracy, syntactic correctness, and grammatical 

accuracy, prompting the exploration of new evaluation metrics. Despite these challenges, our 

attention-based model stands as a valuable component in computer-aided reporting systems, 

providing radiologists with tools to make informed decisions based on detailed and contextually 

rich reports, especially within the context of chest radiography. 

To enhance the model's efficiency, one key avenue involves augmenting the training dataset with 

a more extensive collection of cases, with a particular emphasis on abnormal cases. Additionally, 

exploring the applicability of different chest X-ray datasets could further refine the model's 

performance and generalization. Also, the concept of Active earning can be introduced with this 

framework because active learning is a subfield of machine learning that allows model to perform 

good on limited available limited dataset if model have some role in selecting the data it wants to 

learn from[65]. Moreover, extending our experiments to include multilingual datasets and enabling 

the generation of radiology reports in various languages presents an exciting prospect for future 

advancements in this field. Addressing the challenges of generating entirely new sentences 

demands a meticulous approach, necessitating a combination of innovative training strategies and 

the acquisition of a more diverse and expansive dataset. 
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