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ABSTRACT

Electronic Structure and Dynamics of Uranyl-Peroxide Species

Ethan T. Hare

Director: Pere Miro, Ph.D.

Uranyl-peroxide nanocapsules are a unique family of sclf-assembled actinide
species. Uranyl ions rapidly self-assemble in basic peroxidic media through a myriad of
reactions to coalesce into a single nanocapsule that includes both peroxide and hydroxide
bridging groups between the uranyl moieties. A wide variety of capsules can be formed,
and it has been proposed that square and pentagonal building blocks assemble prior to
nanocapsule formation. We have studied the speciation of the pentagonal ([(UV102)s(n?*-
O5)s(1-1%,n*-02)5-0(OH)20]'") uranyl-peroxide nanocapsule building blocks using density
functional theory calculations. We predicted the most favorable speciation pathways for
the self-assembly of the building blocks prior to cluster formation including the effect of
pH, temperature, and alkali counterions. In addition, we also mapped the potential energy
surface by scanning the molecular normal modes and created a large database containing
uranyl monomers [(UO,)(n-0.);]* and [(UO,)(n>-0,).(OH)]>. We then used the atomistic
machine learing package to train a neural network potential in order to create a cheap
structure-energy connection that could be used to predict quantum mechanics energetics of
larger uranyl-peroxide systems for a fraction of the computational cost.

KEYWORDS: nuclear fuel cycle, uranyl-peroxide, nanocapsules, density functional

theory, speciation, machine learning




TABLE OF CONTENTS

ACTONYIM LSt .uuiiiiiiiiinninnnniiiiieinmiiniiiniiinnissioniimsiint st sssstesssssssss sssssas sossessennane v
LiSt 0F FiUEES..uuiiiiiieriiicrtiiniinsiiisnssisnicniinsseissnisnsimaminisssssesiseaniessssisessisssssessns vi
LiSt 0f TaDIES cucoviiiniiiiniicniiniiinninciiasiissstiscssisnsce st csnssessssssssassnssassassassssssssssesssnes viii
ACKNOWICUZEIICIIES .ovciririiniiiinininsiniisnississnimisesnsesisenmiseeimsasiosesisssssnssssnsssssssssessssess ix
Chapter One: INTOAUCHION ......ccivvinininiiinsiniiesinsnimimsesmisasmmissenmasnsesses 1
Chapter Two: Computational Details ..o 5
Quantum Chemical Calculations.. ... 5
NEUral NEtWOIK ivornveniinnniiiiiiniiiisiimsinssssenisiesiisssmssisssis 6
Chapter Three: ReSults ... s 8
Speciation of Pentagonal [(UY'02)s(1>-05)s(n-12,n*-02)5-0(OH)20]'* Uranyl-
PeroxXide SPecies ... st sssisstesessssnses 8
Electrostatic Potentials ... 11
Neural Network Potentials.....cuciiimniiiiiiiiiiiiioess s 14
Chapter Four: Conclusions ...iiiiiiiciiiimesissiericinsiiesaeressaseesrassessasssseseessnsess 18
REFOICIICES cuviricriireninicnriissniiiiianinisinistisnisesses e s arsnsssssasssssasassersanssnssaessassssnesnasassaes 19

v




ACRONYM LIST
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Burke-Emzerhof, PBE; Slater-type triple-z plus a polarization function, TZP; zero-order
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RMSE; HOMO, highest occupied molecular orbital; DoS, density of states.
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CHAPTER ONE
Introduction

Radioactive waste from the nuclear fuel cycle is one of the most pressing
environmental problems of the 21% century. Significant amounts of radioactive waste
originate from uranium mining operations and spent nuclear fuel.! In the United States,
2,000 tons of radioactive waste is generated every year from nuclear power plants with
over 60,000 tons of waste scattered across temporary repositories. Long-term nuclear
waste repositories have been proposed at isolated sites such as Yucca Mountain;' however,
due to the poor public perception of nuclear waste storage, ineffective waste containment,
and a lack of federal funding, a long-term repository site has never been fully implemented.
This has led to the temporary storage of spent nuclear fuel rods in nuclear power plants
before transport to other short-term repositories. The United States nuclear waste problem
is further compounded by the lack of nuclear reprocessing facilities which are used by some
European countries to reduce the amount of waste to be stored in long-term repositories.

One of the most pressing problems presented by a lack of storing or reprocessing
uranium waste is water contamination. The potential for large-scale water contamination
became glaringly obvious following the 2011 Fukushima nuclear disaster,? but the risk for
groundwater contamination also remains high due to improperly stored uranium mining
tailings or spent nuclear fuel waste.” * Radiation from uranium causes radiolysis of water
resulting in the formation of numerous ions and radicals, notably hydroxide radical (Figure
1).> Hydroxide radicals enhance the transformation of solid uranium oxide (spent nuclear
fuel rods) into uranium aqueous species via redox reactions, as well as the formation of

hydrogen peroxide, oxygen, and hydride ions among other species.®
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Figure 1. Water radiolysis by a, b, and g radiation present in spent nuclear fuel rods and
its role in the solubilization of uranium oxide rods.

In acidic aqueous media, uranium’s most stable form is the uranyl ion, [UY'02]*";

therefore, the proper understanding of uranyl speciation and chemistry is essential to
improving reprocessing and reclamation. Studtite is the only known uranyl peroxide
mineral, and it forms when uranyl and peroxide are present in acidic media.”® The species
of interest form in basic pH with H2O,. The uranyl ions rapidly self-assemble into a diverse
family of hollow nanoclusters including a large number of urany! units bridged by peroxide
and hydroxide ligands (Figure 2).> ' Uranyl-peroxide species ranging from 20 up to 60
uranyl units have been experimentally isolated with topologies similar to fullerenes. These
nanoclusters may have important implications in developing a more efficient nuclear

reprocessing cycle involving the filtration of polynuclear nanosized actinide species.'!
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Figure 2. Example of uranyl-peroxide nanoclusters synthesis from uranyl ([UY'02]*"), a
base (XOH), and hydrogen peroxide (H202).

The exact speciation process from the uranyl ion to the cluster is still unknown, but
it is believed the formation of square and/or pentagonal faces occurs first. Several clusters
contain only peroxides bridging between the uranyl moieties such as Uz, Uzg, and Uys.
However, in most cases the speciation of uranyl-peroxide nanocapsules is further
complicated by the presence of hydroxide as bridging ligand in addition to peroxide. The
ratio of hydroxide/peroxide bridging ligands are strongly affected by the reaction
conditions and the nanocapsule itself.'> Peroxide bridging has a bent dihedral angle of
145.7° and is more flexible than hydroxide bridging which has an almost linear dihedral
angle of 173.4°.13 ' Therefore, the peroxide facets are the ones inducing the needed
curvature to close the uranyl-peroxide species. Finally, it is also clear that alkali cations
mediate in cluster formation, as they control the nuclearity and topology of the final
product; however, their exact role still remains unknown beyond the stabilization of the
products via ion-pairing.'>'8
In this study, we report our findings on the speciation of pentagonal uranyl peroxide

species [(UY102)s(u-1>n-02)5(n-OH)2n(n?-02)s]'% ranging from fully peroxide to fully




hydroxide bridging at different experimental conditions using density functional theory
calculations. In Figure 3 we present the geometry and schematic representation of two of
the studied species: [(UO2)s(m*-02)s(u-1>n>02)s]"" and  ([(UO2)s(n*-02)s(p-n%n’-
0:)3(OH)4]'". In addition, we have trained a neural network potential to predict the free
energy of uranyl monomers as a proof-of-concept for the potential use of neural networks
as a method to determine the free energy of larger and more computationally expensive

uranyl-peroxide species.

Figure 3. Geometry and schematic representation [(UO2)s(n*-02)s(p-1%,1%-02)s5]'" (left)
and ([(UO2)s(n*-02)s(n-1n*-02)3(0OH)4]'* (right) uranyl-peroxide species Color code:
Uranium in yellow, oxygen in red, and hydrogen in white.




CHAPTER TWO

Computational Detatls

Quantum Chemical Calculations
All geometries were fully optimized using the density functional theory (DFT)
implementation in the Amsterdam Density Functional (ADF2017) package.'” *" The
Perdew-Burke-Ermzerhof (PBE) exchange-correlation functional was used in conjunction
with a Slater-type triple-z plus a polarization function (TZP) and a small frozen core on all
atoms. 22 Relativistic corrections were added using the scalar relativistic zero-order
regular approximation (ZORA).?!: 2 Solvent effects of water were included with the

1.?¢ The nature of all stationary points was verified by

COSMO continuum solvation mode
analytic computation of vibrational frequencies which were used for the computation of
zero-point vibrational energies and molecular partition functions for use in computing

298.15 K thermal contributions to free energy employing the usual rigid-rotor harmonic

oscillator approximation.




Neural Network

The geometries of [(U02)(02)3]* and [(UO2)(02)2(OH)]* were optimized using the
above level of theory and the normal mode scan (e.g., the generation of many structures
displaced from the energetic minima along each vibrational absorption) was performed by
applying stepwise displacements along the harmonic normal modes. Only structures
within leV of the minimum were considered. This generated a database with 6892
structures for [(UO2)(02)3]* and a database with 7915 structures for [(UO2)(O2)2(OH)]*.
The data were randomly divided into a training set and a test set containing 90% and 10%
of the structures, respectively. We then trained different neural network potentials (NNPs)
with the atomistic machine-learning package (AMP) using either a [(UO2)(02):]* or
[(UO2)(02)2(OH)]* training set as well as both of them simultaneously.?’

We used atom centered symmetry functions as descriptors of the chemical
environment, from which a neural network learns to predict contributions to the total
energy or properties. In particular, we used (Gaussian functions with different parameters
and cutoff radius are employed to describe the local atomic environment to a neural
network as proposed by Behler and Parrinello.?® The two-body (G?) and three body (G*)
symmetry functions (Equation 1 and Equation 2, respectively)} describe the radial and
angular distribution of neighbor atoms within a cutoff radius respect to any given atom

(Equation 3).
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where R;; is the distance between atom i and f, Ry is the distance between atom i and

k, Rj;, is the distance between atom j and k, N is the total number of neighbor atoms, f; is

. ) R:: R:
the cutoff function, 1, {,and A are Gaussian parameters, and g; ik = acos (—” [k). We

ij+ Rik
used a gaussian cutoff of 6.5 angstroms, G2={ n=0.05, 4.0, 20.0, 80.0}, G4={ n=0.05;
A=1.0,-1.0; {=1.0,4.0}, in combination with two hidden layers with 15 neurons. Both
energy and forces were used in the NNP training, and the NNP trained until the energy and

forces achieved a RMSE of 0.01.




CHAPTER THREE

Results

Speciation of Pentagonal [{(UY10;)s(12-Os)s(u-1%1%-02)s5-n(OH)24]'" Uranyl-Peroxide

Species

We performed geometry optimizations of all possible pentagonal [(UY'02)s(1?-
05)s(u-1>M>-02)s5.n(OH)20]'% uranyl-peroxide species with and without the presence of a
Na' ion pair. We computed their Gibbs free energy of reaction at high pH and peroxide
concentration, pH = 14 and [OOH™] = IM (Figure 5}, and low pH and low peroxide
concentration, pH = 8 and [OOH™] = 1mM (Figure 4). The reaction to transform a bridging
peroxide into two hydroxides depends on the pH, since the first pKa of H2021s 1175, We
assumed to be the following reactions to compute the speciation of pentagonal uranyl-

peroxide species:

pH>11.75
[(UY'02)s(1-05)s(u-n"1n%-02)s]'" + n H20 +n OH = [(UO2)s(n*Os)s(n-1*n>-02)s.
n(OH)20]'% + n HOO
pH<11.75
[(UY'02)s(1?-05)s(u-n?,n*-02)s]'" + 2n H20 = [(UO2)s(n*-05)s(u-1%n2-02)5.n(OH)20]'* +
n H>O;

At pH = 14 (Figure 4), only the fully peroxide species is favorable, but the presence
of a Na' ion pair, species with one and two sets of bridging hydroxides become favorable.
It is important to notice that there are isomers for species with 2 and 3 sets of hydroxide
bridges, since they can be either consecutive or alternating with peroxide bridges. In all

the cases the species with the alternated peroxide/hydroxide bridges is the most stable




isomer. At pH = 8, the fully peroxide species along with the species with one set of
bridging hydroxides are favorable; however, the fully peroxide species remains the most
favorable one. At pH = 8, with a Na+ ion pair, only the species with one and two sets of
bridging hydroxides species are favorable. In this case, latter species are the most favorable
ones. This demonstrates that the acidification as well as the decrease of hydrogen peroxide
in the media (e.g., reaction to form uranyl-peroxide species or decomposition) will impact

the speciation of uranyl-peroxide species in solution.
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Figure 4. Speciation of pentagonal [(UY'02)s(n0s)s(t-1%12-02)5-n(OH)20]' uranyl-
peroxide nanocapsule building blocks at pH=14 and [OOH-]=1M, and in parenthesis
pH=8 and [H202]=1mM. Gibbs free energies in kcal mol™! relative to [(UY'O2)s(n’-
Os)s(u-*n*-02)s]"".
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Figure 5. Speciation of pentagonal [(UY'02)s(n?-0s)s(n-n%n>-02)s5-0(OH)2a] """ uranyl-
peroxide nanocapsule building blocks in the presence of Na™ at pH=14, [Na"]=1M, and
[OOH]=1M, and in parentheses pH=8, [Na']=1mM, and [H20:]=1mM. Gibbs free
energies in kcal mol™! relative to Na[(UY'02)s5(n?-O0s)s(u-n’n-02)s]”".
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Electrostatic Potentials

After obtaining the optimized geometries for the [(UY'02)s(1%-Os)s(-n?1>02)s.
n(OH)2n]""" uranyl-peroxide species, we calculated the electrostatic potential for two of
them: a full peroxide ([(UO2)s(m*-02)s(u-n%n*02)s]'") and one with two sets of hydroxide
bridges ([(UO2)s(*02)s(1-1n%1n*-02)3(0H)4]'") (Figure 6). The electrostatic potential
calculations showed that the uranyl oxygens were the most negative positions in the fully
peroxide faces, but the hydroxide bridging was the most negative in the hydroxide faces.

The counter cation coordinates with the faces in these positions to form an ion pair.

[(UO,)s(0,)10]™ Na[(UO,)s(05)10]°>  [(UO,)s(0,)s(OH),]*%  Na[(UO,)s(0,)(OH)41*

Bottom

-1.13

Figure 6. Electrostatic potential of [(UO2)s(n*-02)s(n-n%n?-02)s]'% and ([(UO2)s(n?*-
02)s5(1-1%,n%-02)3(0H)4]'™ species with and without a Na* cation. Density isovalue =
0.04.

The analysis of the frontier orbitals of [(UO2)s(n>-02)s(n-1n%,1>-02)s]'" reveals two

sets of five orbitals associated with the terminal and bridging peroxide ligands (Figure 7).
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The top orbitals are the p” antibonding orbitals of the terminal peroxide ligands, while the

following set of orbitals are the p~ antibonding orbitals of the bridging peroxides.

DoS peak p(r) HOMO-5 DoS peak p(r)

Figure 7. HOMO and HOMO-5 molecular orbitals for [(UO2)s(1?-02)s(u-n?n-02)s]'*
species and total density for the different DoS peroxide bands.

The plot of the density of states of the [(UY'02)s(n*-Os)s(1t-n%102)5.0(OH)24]'""
uranyl-peroxide species (Figure 8), further demonstrates this assignment. The peak
associated with the bridging peroxides (<4 eV) systematically disappears with the
replacement of bridging peroxides by hydroxides, while the terminal peroxide peak (>4
eV) remains mostly unchanged. These changes will also have implications on the Raman
spectra of these species since peroxide is Raman active. The transformation of bridging
peroxides into bridging hydroxides will reduce the peroxide Raman signal and it may be
useful for the identification of structural changes in the species. In addition, the UV-Vis
excitation energies from the peroxide/hydroxide orbitals to the empty uranium f-orbitals

are also expected to be impacted.

12
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Figure 8. Density of states (DoS) for the frontier orbitals region of [(UY'02)s(1n*-Os)s(u-
1%.1%-02)5.:(OH)2n] " uranyl-peroxide species. Bridging peroxides bands are at <4 eV
and terminal peroxide bands are at >4 eV.

Neural Network Potentials

The chemical space as well as many uranyl-peroxide nanoclusters are too large to
be studied using quantum mechanics methods such as density functional theory. In
consequence, computational bottom-up methodologies that thrive from leveraging
quantum chemical results to build predictive models such as neural networks are essential
as they can be used to complement previously used approaches and streamline the
exploration of uranyl-peroxide chemical space. We mapped the potential energy surface
by scanning the molecular normal modes and created a large database containing uranyl
monomers [(UO2)(02)3]* and [(UO2)(02)2(OH)]*. This approach maps the potential
energy surface of a system displacing the ground state geometry along the harmonic normal
modes (normal mode sampling). Neural network potentials derived from the potential
energy surface mapping of uranyl-peroxide species can be used to create a structure-energy

models capable of predicting quantum mechanics energetics and other properties at fraction

of the computational cost.

13




Neural Network
We trained three NNPs using the atomistic machine-learning package (AMP): 1)
using only the training data from the normal mode sampling of [(UO2)(02)3]*, 2) using
only the training data from the normal mode sampling of [(UO2)(02)2(OH)]*, and 3) using
the training data from the normal mode sampling of both [(UO)(02)3]* and
[(UO2)(02)2(0H)]*. After the models were trained, we checked their performance with
their test sets (Figures 9, 10, and 11) showing a very good agreement between the DFT

(correct) and the predicted NNP energies.

= NNP R? =(.9985

-76.0
5 —76.2
LE
&
o -76.4 -
o
m
=
N -76.6 -
A

-76.8

~76.8 -76.6 ~76.4 ~76.2 ~76.0
NNP Energy (eV)

Figure 9. NNP vs DFT energy for the [(UO2)(O2)3]* test set. NNP was trained using
only the training data from the normal mode sampling of [(UO2)(02);]*.
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Figure 10. NNP vs DFT energy for the [(UO2)(02)2(OH)]*" test set. NNP was trained
using only the training data from the normal mode sampling of [(UO2)(O2)(OH)].
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Figure 11. NNP vs DFT energy for the [(UO2)(02):]* and [(UO2)(O2)2(OH)]*" test set.
NNP was trained using the training data from the normal mode sampling of both
MONomers.




The energetics of the NNPs are presented in Table 1 for the different species. The
error between the DFT and NNP energy is below 1 keal mol™! which is chemical accuracy.
Furthermore, the trained NNP can be used to evaluate the energy of [(UO2)(02)3]* species
over 2100% faster than DFT. These results are promising as it shows that it is possible to

maintaining a high degree of accuracy for a fraction of the computational cost.

Table 1. Comparison between the DFT and NNP energies for different NNP models.
Energies in kecal mol™.

DFT NNP Absolute
Species Training Set
Energy Energy Error
A Itself -1785.92 | -1785.53 0.39
[(UO2)02)s3]"
Both -1785.92 | -1785.49 0.44

Finally, since the NNP contains information of the potential energy surface it can
be used to predict the vibrational spectrum of [(UO2XO2)]* and [(UO2)(02):(0H)]*
(Figure 12) The frequencies calculation is 20 times faster than quantum mechanics with
errors in the order of 8 em™. The spectra in Figure 12 are power spectra since the
vibrational spectrum generated with the NNP spectra does include any selection rules.
These results are highly promising, but their applicability is limited to the chemical space
used in the training. The transferability of the NNP to larger species was not studied, but

it is expected that with the addition of peroxide and hydroxide bridging species, NNP

trained using small uranyl-peroxide species could be used to study large nanoclusters.
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Figure 12. Power spectra from DFT (black) and NNP (red) for [(UO2)(02)3]* species.
NNP was trained using only the training data from the normal mode sampling of
[(UO2)(02)s]*.
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CHAPTER FOUR
Conclusions

In conclusion, we have studied the speciation pathways of the pentagonal faces with
different number of peroxide and hydroxide ligands and at different experimental
conditions. At very basic pH and high sodium and hydrogen peroxide concentration
(pH=14, [Na'}=1M, and [OOH]=1M), only the fully peroxide and singly hydroxide
species are thermodynamically favorable. Under more mild conditions (pH=8, [Na]=I
uM, and [H202]=1 mM), favorability shifts towards the single and double hydroxide
species. Importantly, as the species include additional bridging hydroxide ligands, a band
in the density of states spectra disappears which may have applications in their spectral
characterization.

In addition, we demonstrated a successful example of machine learning methods in
calculating thermodynamic and spectroscopic properties of uranyl-peroxide species. The
neural network potential calculates the energies of the uranyl-peroxide monomers two
orders of magnitude faster and with a high degree of accuracy compared to conventional
DFT methods. These results suggest a promising direction for machine learning in

chemical systems, especially in larger uranyl-peroxide species.
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