Date of Award

Spring 3-5-2020

Document Type

Honors Thesis



First Advisor

Ramiro Lafuente-Rodriguez, Ph.D.

Second Advisor

Dan Van Peursem, Ph.D.

Third Advisor

Gabriel Picioroaga, Ph.D.


Lattice, Divisibility, Order, Abstract algebra

Subject Categories



In this thesis, we examine a part of abstract algebra known as Groups of Divisibility. We construct these special groups from basic concepts. We begin with partially-ordered sets, then build our way into groups, rings, and even structures akin to rings of polynomials. In particular, we explore how elementary algebra evolves when an ordering is included with the operations. Our results follow the work done by Anderson and Feil, however we include more explicit proofs and constructions. Our primary results include proving that a group of divisibility can be provided with an order to make it a partially-ordered group; that every Bezout domain is a pseudo-Bezout domain; and that an integral domain is a pseudo-Bezout domain if and only if the partial order on its group of divisibility is a lattice.

Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.