Title
Using Neural Networks to Predict MBA Student Success
Document Type
Article
Publication Date
3-2004
Keywords
neural networks, GPA, MBA student performance, logit, discriminant analysis
Disciplines
Business Administration, Management, and Operations | Business Analytics | Business Intelligence | Higher Education Administration
Abstract
Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student pools based on undergraduate GPA, GMAT scores, undergraduate major, age and other relevant data. The results of this study show that the neural network model performs as well as the statistical models and is a useful tool in predicting MBA student performance. Several limitations of this study are discussed.
Publication Title
College Student Journal
Volume
38
Issue
1
First Page
143
Last Page
149
ISSN
0146-3934
Recommended Citation
Naik, B. and S. Ragothaman, “Using Neural Networks to Predict MBA Student Success,” College Student Journal, Vol. 38:1, March 2004, pp. 143-149.