Title

Sulfur-Containing Analogs of the Reactive [CuOH]2+ Core

Document Type

Article

Publication Date

3-18-2021

Disciplines

Inorganic Chemistry | Physical Chemistry

Abstract

With the aim of drawing comparisons to the highly reactive complex LCuOH (L = bis(2,6-diisopropylphenylcarboxamido)pyridine), the complexes [Bu4N][LCuSR] (R = H or Ph) were prepared, characterized by spectroscopy and X-ray crystallography, and oxidized at low temperature to generate the species assigned as LCuSR on the basis of spectroscopy and theory. Consistent with the smaller electronegativity of S versus O, redox potentials for the LCuSR–/0 couples were ∼50 mV lower than for LCuOH–/0, and the rates of the proton-coupled electron transfer reactions of LCuSR with anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine at −80 °C were significantly slower (by more than 100 times) than the same reaction of LCuOH. Density functional theory (DFT) and time-dependent DFT calculations on LCuZ (Z = OH, SH, SPh) revealed subtle differences in structural and UV–visible parameters. Further comparison to complexes with Z = F, Cl, and Br using complete active space (CAS) self-consistent field and localized orbital CAS configuration interaction calculations along with a valence-bond-like interpretation of the wave functions showed differences with previously reported results ( J. Am. Chem. Soc.2020, 142, 8514), and argue for a consistent electronic structure across the entire series of complexes, rather than a change in the nature of the ligand field arrangement for Z = F.

Publication Title

Inorganic Chemistry

Volume

60

Issue

7

First Page

5217

Last Page

5223

DOI

10.1021/acs.inorgchem.1c00216

Share

COinS