Document Type

Thesis

Date of Award

2022

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

KC Santosh

Abstract

Early detection of infectious disease is the must to prevent/avoid multiple infections, and Covid-19 is an example. When dealing with Covid-19 pandemic, Cough is still ubiquitously presented as one of the key symptoms in both severe and non-severe Covid-19 infections, even though symptoms appear differently in different sociodemographic categories. By realizing the importance of clinical studies, analyzing cough sounds using AI-driven tools could help add more values when it comes to decision-making. Moreover, for mass screening and to serve resource constrained regions, AI-driven tools are the must. In this thesis, Convolutional Neural Network (CNN) tailored deep learning models are studied to analyze cough sounds to detect the possible evidence of Covid-19. In addition to custom CNN, pre-trained deep learning models (e.g., Vgg-16, Resnet-50, MobileNetV1, and DenseNet121) are employed on a publicly available dataset. In our findings, custom CNN performed comparatively better than pre-trained deep learning models.

Subject Categories

Computer Sciences

Keywords

CNN, Covid-19, Deep learning, DenseNet121, ResNet-50, VGG-16

Number of Pages

82

Publisher

University of South Dakota

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.