Author ORCID Identifier
Document Type
Dissertation
Date of Award
2023
Degree Name
Doctor of Philosophy (PhD)
Department
Biology
First Advisor
David Swanson, Mark Dixon
Abstract
Recognizing the distributional patterns of species can inform management actions and increase scientific knowledge about species. Habitat Suitability Models (HSMs) are valuable tools in modeling species’ niches and effects of climate change and anthropogenic and natural disturbances on species’ distributions and abundances. In this dissertation, I expanded the application of hierarchical HSMs for a rare bird (Virginia’s warbler) and an economically valuable bird (ring-necked pheasant) in South Dakota. Also, we developed multiscale HSMs for grassland birds in the Upper Missouri River Basin (UMRB) to quantify current habitat associations and predict the influences of climate and landcover change associated with the implementation of bioenergy with carbon capture and storage (BECCS) and other carbon mitigation scenarios. We found that applying an Ensemble of Small Models (ESMs) approach within a hierarchical framework can lead to detailed information about niches of rare species, limiting factors at each habitat selection order, and potential distribution, which could help inform multiscale management. At the broadest habitat selection order, Virginia’s warbler had a narrow climatic niche. The importance of environmental variables changed across finer orders, such that at broader orders many covariates were important whereas at finer orders certain covariates became more important than others. For the model of pheasant abundance, my results showed that our hierarchical Bayesian approach allows for simultaneous selection of variables and scales of effect. I found that pheasant abundance was positively affected by intermediate levels of grassland cover. Scales of effect and spatiotemporal variation influenced predictor variable impacts on pheasant abundance. For the modeling of grassland birds across the UMRB, my results showed that the influence of climate change on abundance, distribution and species richness of grassland species is more pronounced than the influence of landcover changes due to implementing BECCS scenarios. This finding implies that regardless of landcover and land-use changes, climate change may limit or expand abundance and distribution of grassland bird species in the UMRB. Further, we found that grassland birds will be more affected by regional increases in temperature than decreases in precipitation.
Subject Categories
Biology | Ecology and Evolutionary Biology
Keywords
Avian, Climate change, Habitat modeling, Habitat selection, Species distribution modeling, Upper Missouri River Basin
Number of Pages
202
Publisher
University of South Dakota
Recommended Citation
Amirkhiz, Reza Goljani, "APPLICATION OF HIERARCHICAL SPECIES DISTRIBUTION MODELS TO AVIAN SPECIES OF SOUTH DAKOTA AND THE UPPER MISSOURI RIVER BASIN" (2023). Dissertations and Theses. 143.
https://red.library.usd.edu/diss-thesis/143